Page 213 - Handbook Of Integral Equations
P. 213

7 .For f(x)=  n    A k sin(λ k x), a solution of the equation has the form
                      ◦
                                 k=0
                                           n
                                                A k

                                    y(x)=      2    2  B ck sin(λ k x) – B sk cos(λ k x) ,
                                             B   + B
                                          k=0  ck   sk
                                        ∞                           ∞

                              B ck =1 +   K(–z) cos(λ k z) dz,  B sk =  K(–z) sin(λ k z) dz.
                                        0                          0
                     8 .For f(x) = cos(λx)  n    A k exp(µ k x), a solution of the equation has the form
                      ◦
                                        k=0
                                        n                           n
                                            A k B ck                    A k B sk

                           y(x) = cos(λx)    2    2  exp(µ k x) + sin(λx)  2  2  exp(µ k x),
                                           B  + B                      B   + B
                                        k=0  ck   sk                k=0  ck   sk
                                  ∞                                 ∞

                       B ck =1 +    K(–z) exp(µ k z) cos(λz) dz,  B sk =  K(–z) exp(µ k z) sin(λz) dz.
                                 0                                 0
                     9 .For f(x) = sin(λx)  n    A k exp(µ k x), a solution of the equation has the form
                      ◦
                                       k=0
                                        n                           n
                                            A k B ck                    A k B sk
                           y(x) = sin(λx)          exp(µ k x) – cos(λx)         exp(µ k x),
                                           B 2  + B 2                  B 2  + B 2
                                       k=0  ck   sk                 k=0  ck   sk
                                  ∞                                 ∞

                       B ck =1 +    K(–z) exp(µ k z) cos(λz) dz,  B sk =  K(–z) exp(µ k z) sin(λz) dz.
                                 0                                 0
                     10 . In the general case of arbitrary right-hand side f = f(x), the solution of the integral
                       ◦
                     equation can be represented in the form
                                                             ˜
                                                  1     c+i∞  f(p)  px
                                           y(x)=                   e  dp,
                                                              ˜
                                                 2πi  c–i∞ 1+ k(–p)
                                          ∞                         ∞

                                                           ˜
                                   ˜
                                   f(p)=    f(x)e –px  dx,  k(–p)=    K(–z)e pz  dz.
                                          0                        0
                                   ˜
                                          ˜
                        To calculate f(p) and k(–p), it is convenient to use tables of Laplace transforms, and to
                     determine y(x), tables of inverse Laplace transforms.
                 2.9-3. Other Equations
                               x  1     t
               63.   y(x)+      f      y(t) dt =0.
                            0  x   x
                     Eigenfunctions of this integral equation are determined by the roots of the following tran-
                     scendental (algebraic) equation for the parameter λ:

                                                    1

                                                         λ
                                                     f(z)z dz = –1.                         (1)
                                                   0
                      ◦
                     1 . For a real simple root λ k of equation (1) there is a corresponding eigenfunction
                                                            λ k
                                                    y k (x)= x .



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 192
   208   209   210   211   212   213   214   215   216   217   218