Page 214 - Handbook Of Integral Equations
P. 214

◦
                     2 . For a real root λ k of multiplicity r there are corresponding r eigenfunctions
                                y k1 (x)= x ,  y k2 (x)= x λ k  ln x,  ... ,  y kr (x)= x λ k  ln r–1  x.
                                        λ k
                      ◦
                     3 . For a complex simple root λ k = α k + iβ k of equation (1) there is a corresponding
                     eigenfunction pair
                                     (1)
                                                            (2)
                                    y (x)= x α k  cos(β k ln x),  y (x)= x α k  sin(β k ln x).
                                     k                      k
                     4 . For a complex root λ k = α k +iβ k of multiplicity r there are corresponding r eigenfunction
                      ◦
                     pairs
                               (1)                          (2)
                              y (x)= x α k  cos(β k ln x),  y (x)= x α k  sin(β k ln x),
                               k1                           k1
                               (1)                          (2)
                              y (x)= x α k  ln x cos(β k ln x),  y (x)= x α k  ln x sin(β k ln x),
                               k2                           k2
                              ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅   ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
                                                            (2)
                               (1)
                              y (x)= x α k  ln r–1  x cos(β k ln x),  y (x)= x α k  ln r–1  x sin(β k ln x).
                               kr                           kr
                        The general solution is the combination (with arbitrary constants) of the eigenfunctions
                     of the homogeneous integral equation.
                 For equations 2.9.64–2.9.71, only particular solutions are given. To obtain the general solu-
               tion, one must add the general solution of the corresponding homogeneous equation 2.9.63 to the
               particular solution.
                               x  1     t
               64.   y(x)+      f      y(t) dt = Ax + B.
                            0  x   x
                     A solution:
                                       A       B              1              1
                               y(x)=      x +      ,   I 0 =  f(t) dt,  I 1 =  tf(t) dt.
                                     1+ I 1  1+ I 0         0               0
                               x  1     t
                                                  β
               65.   y(x)+      f      y(t) dt = Ax .
                            0  x   x
                     A solution:
                                               A  β               1   β
                                         y(x)=   x ,    B =1 +    f(t)t dt.
                                               B                0
                               x  1     t
               66.   y(x)+      f      y(t) dt = A ln x + B.
                            0  x   x
                     A solution:
                                                   y(x)= p ln x + q,
                     where
                              A          B       AI l             1              1
                         p =      ,  q =     –       2  ,  I 0 =  f(t) dt,  I l =  f(t)ln tdt.
                             1+ I 0     1+ I 0  (1 + I 0 )      0              0
                             x
                               1    t             β

               67.   y(x)+      f      y(t) dt = Ax ln x.
                            0  x   x
                     A solution:
                                                        β
                                                                 β
                                                y(x)= px ln x + qx ,
                     where
                                A           AI 2             1   β            1   β
                          p =      ,  q = –     2  ,  I 1 =  f(t)t dt,  I 2 =  f(t)t ln tdt.
                              1+ I 1      (1 + I 1 )
                                                           0                0


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 193
   209   210   211   212   213   214   215   216   217   218   219