Page 215 - Handbook Of Integral Equations
P. 215

x
                               1    t
               68.   y(x)+      f      y(t) dt = A cos(ln x).
                               x   x
                            0
                     A solution:
                                               AI c            AI s
                                        y(x)=       cos(ln x)+      sin(ln x),
                                                               2
                                               2
                                              I + I s 2       I + I 2 s
                                                              c
                                               c
                                            1                     1

                                   I c =1 +  f(t) cos(ln t) dt,  I s =  f(t) sin(ln t) dt.
                                           0                     0
                               x  1     t
               69.   y(x)+      f      y(t) dt = A sin(ln x).
                            0  x   x
                     A solution:
                                                AI s           AI c
                                       y(x)= –       cos(ln x)+     sin(ln x),
                                                               2
                                               2
                                              I + I 2         I + I  2
                                               c   s           c   s
                                             1                     1
                                   I c =1 +  f(t) cos(ln t) dt,  I s =  f(t) sin(ln t) dt.
                                           0                     0
                             x
                               1    t
                                                                β
                                                  β
               70.   y(x)+      f      y(t) dt = Ax cos(ln x)+ Bx sin(ln x).
                               x   x
                            0
                     A solution:
                                                   β           β
                                           y(x)= px cos(ln x)+ qx sin(ln x),
                     where
                                               AI c – BI s    AI s + BI c
                                            p =         ,  q =         ,
                                                  2
                                                                2
                                                 I + I s 2     I + I 2 s
                                                                c
                                                 c
                                          1                       1

                                                                       β
                                               β
                                  I c =1 +  f(t)t cos(ln t) dt,  I s =  f(t)t sin(ln t) dt.
                                         0                       0
                               x  1     t
               71.   y(x)+      f      y(t) dt = g(x).
                            0  x   x
                     1 . For a polynomial right-hand side,
                      ◦
                                                         N
                                                               n
                                                   g(x)=    A n x
                                                         n=0
                     a solution bounded at zero is given by
                                             N                      1
                                                 A n  n                 n

                                       y(x)=         x ,    f n =   f(z)z dz.
                                                1+ f n            0
                                             n=0
                     Here its is assumed that f 0 < ∞ and f n ≠ –1(n =0, 1, 2, ... ).
                        If for some n the relation f n = –1 holds, then a solution differs from the above case in
                     one term and has the form
                             n–1             N                                  1
                                  A m   m         A m  m   A n  n                    n
                                                                         ¯
                       y(x)=          x +             x +     x ln x,    f n =  f(z)z ln zdz.
                                                            ¯
                                 1+ f m         1+ f m      f n               0
                             m=0           m=n+1
                        For arbitrary g(x) expandable into power series, the formulas of item 1 can be used, in
                                                                                 ◦
                     which one should set N = ∞. In this case, the convergence radius of the obtained solution y(x)
                     is equal to that of the function g(x).
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 194
   210   211   212   213   214   215   216   217   218   219   220