Page 206 - Handbook Of Integral Equations
P. 206

For equations 2.9.42–2.9.51, only particular solutions are given. To obtain the general solu-
               tion, one must add the general solution of the corresponding homogeneous equation 2.9.41 to the
               particular solution.

                               x
                                                  n
               42.   y(x)+     K(x – t)y(t) dt = Ax ,   n =0, 1, 2, ...
                            –∞
                     This is a special case of equation 2.9.44 with λ =0.
                      ◦
                     1 . A solution with n =0:
                                                A                ∞
                                          y(x)=   ,    B =1 +     K(z) dz.
                                                B              0
                      ◦
                     2 . A solution with n =1:
                                    A    AC                ∞                ∞
                              y(x)=   x +   ,    B =1 +     K(z) dz,  C =    zK(z) dz.
                                    B    B 2             0                0
                     3 . A solution with n =2:
                      ◦
                                                A  2   AC      AC 2   AD
                                         y 2 (x)=  x +2    x +2     –    ,
                                                B       B 2     B 3   B 2

                                       ∞                ∞                 ∞
                                                                             2
                              B =1 +     K(z) dz,  C =    zK(z) dz,  D =    z K(z) dz.
                                      0                0                 0
                     4 . A solution with n =3, 4, ... is given by:
                      ◦
                                          ∂ n    e λx 
                        –λz
                                                                         ∞
                               y n (x)= A              ,    B(λ)=1 +      K(z)e   dz.
                                         ∂λ n  B(λ)
                                                     λ=0               0
                               x
               43.   y(x)+     K(x – t)y(t) dt = Ae λx .
                            –∞
                     A solution:
                                             A  λx              ∞      –λz
                                       y(x)=   e ,     B =1 +    K(z)e   dz.
                                             B
                                                               0
                     The integral term in the expression for B is the Laplace transform of K(z), which may be
                     calculated using tables of Laplace transforms (e.g., see Supplement 4).
                             x

                                                  n λx
               44.   y(x)+     K(x – t)y(t) dt = Ax e  ,   n =1, 2, ...
                            –∞
                     1 . A solution with n =1:
                      ◦
                                                     A   λx   AC  λx
                                              y 1 (x)=  xe  +    e ,
                                                     B        B 2
                                             ∞                   ∞

                                    B =1 +     K(z)e –λz  dz,  C =  zK(z)e –λz  dz.
                                            0                    0
                     It is convenient to calculate B and C using tables of Laplace transforms.
                     2 . A solution with n =2:
                      ◦
                                                                    2
                                          A  2 λx   AC    λx     AC    AD    λx
                                   y 2 (x)=  x e  +2    xe  + 2      –      e ,
                                          B          B  2        B  3  B 2
                                 ∞                    ∞                     ∞

                                                                               2
                         B =1 +    K(z)e –λz  dz,  C =  zK(z)e –λz  dz,  D =  z K(z)e –λz  dz.
                                 0                   0                     0
                      ◦
                     3 . A solution with n =3, 4, ... is given by:
                                    ∂           ∂ n     e λx               ∞      –λz
                            y n (x)=  y n–1 (x)= A        ,    B(λ)=1 +     K(z)e   dz.
                                   ∂λ           ∂λ n  B(λ)                0
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 185
   201   202   203   204   205   206   207   208   209   210   211