Page 157 - Handbook Of Integral Equations
P. 157

x

               8.    y(x)+ A    t cosh[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.28 with g(t)= At.

                              x

                                 k
                                      m
               9.    y(x)+ A    t cosh (λx)y(t) dt = f(x).
                              a
                                                                    m
                                                                                   k
                     This is a special case of equation 2.9.2 with g(x)= –A cosh (λx) and h(t)= t .
                              x

                                 k
                                      m
               10.   y(x)+ A    x cosh (λt)y(t) dt = f(x).
                              a
                                                                 k
                                                                               m
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = cosh (λt).
                             x


               11.   y(x) –    A cosh(kx)+ B – AB(x – t) cosh(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A cosh(kx).
                        Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                            G(x)   B 2     x  B(x–s)                A
                      R(x, t)=[A cosh(kx)+ B]   +         e    G(s) ds,  G(x)=exp    sinh(kx) .
                                            G(t)  G(t)                             k
                                                        t
                             x


               12.   y(x)+     A cosh(kt)+ B + AB(x – t) cosh(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A cosh(kt).
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                            G(t)   B 2     x  B(t–s)                 A
                     R(x, t)= –[A cosh(kt)+ B]   +         e    G(s) ds,  G(x)=exp   sinh(kx) .
                                            G(x)   G(x)  t                         k
                              ∞        √


               13.   y(x)+ A     cosh λ t – x y(t) dt = f(x).
                              x
                                                                       √
                     This is a special case of equation 2.9.62 with K(x)= A cosh λ –x .

                 2.3-2. Kernels Containing Hyperbolic Sine

                                x
               14.   y(x) – A   sinh(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A sinh(λx) and h(t)=1.
                        Solution:
                                             x

                              y(x)= f(x)+ A   sinh(λx)exp  A   cosh(λx) – cosh(λt)    f(t) dt.
                                            a             λ



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 136
   152   153   154   155   156   157   158   159   160   161   162