Page 153 - Handbook Of Integral Equations
P. 153

x

               23.   y(x)+ A    (x – t)e λ(x–t) y(t) dt = f(x).
                              a
                      ◦
                     1 . Solution with A >0:
                                                 x                            √
                                 y(x)= f(x) – k  e λ(x–t)  sin[k(x – t)]f(t) dt,  k =  A.
                                               a
                     2 . Solution with A <0:
                      ◦
                                                x                             √
                                y(x)= f(x)+ k   e λ(x–t)  sinh[k(x – t)]f(t) dt,  k =  –A.
                                              a
                                x
               24.   y(x)+ A    (x – t)e λx+µt y(t) dt = f(x).
                              a
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 2.2.22:
                                                 x

                                       u(x)+ A    (x – t)e (λ+µ)t u(t) dt = f(x)e –λx .
                                                a
                             x

               25.   y(x) –   (Ax + Bt + C)e λ(x–t) y(t) dt = f(x).
                            a
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 2.1.6:

                                                 x
                                       u(x) – A  (Ax + Bt + C)u(t) dt = f(x)e –λx .
                                               a
                                x
                                 2 λ(x–t)
               26.   y(x)+ A    x e     y(t) dt = f(x).
                              a
                     Solution:
                                                 x

                                                    2
                                                                 3
                                                             3

                                  y(x)= f(x) – A   x exp    1  A(t – x )+ λ(x – t) f(t) dt.
                                                         3
                                                a
                              x

               27.   y(x)+ A    xte λ(x–t) y(t) dt = f(x).
                              a
                     Solution:
                                                  x
                                                           1  3  3
                                  y(x)= f(x) – A   xt exp  A(t – x )+ λ(x – t) f(t) dt.
                                                         3
                                                a
                                x
                                 2 λ(x–t)
               28.   y(x)+ A    t e    y(t) dt = f(x).
                              a
                     Solution:
                                                 x

                                                            3
                                                   2
                                                                3

                                  y(x)= f(x) – A   t exp    1  A(t – x )+ λ(x – t) f(t) dt.
                                                         3
                                                a
                              x

                                     2 λ(x–t)
               29.   y(x)+ A    (x – t) e  y(t) dt = f(x).
                              a
                     Solution:
                                                          x
                                            y(x)= f(x) –   R(x – t)f(t) dt,
                                                        a
                                                      √      √      √                    1/3
                                          2
                               2

                         R(x)= ke (λ–2k)x  – ke (λ+k)x  cos  3 kx –  3 sin  3 kx ,  k =  1  A  .
                               3          3                                         4
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 132
   148   149   150   151   152   153   154   155   156   157   158