Page 239 - Handbook Of Integral Equations
P. 239

b

               3.        ln |x – t| + β y(t) dt = f(x).
                      a
                     By setting
                                                 –β
                                                                          –β
                                        –β
                                   x = e z,  t = e τ,  y(t)= Y (τ),  f(x)= e g(z),
                     we arrive at an equation of the form 3.4.2:
                                      B

                                                                             β
                                                                     β
                                        ln |z – τ| Y (τ) dτ = g(z),  A = ae , B = be .
                                     A

                       a     A
               4.        ln       y(t) dt = f(x),  –a ≤ x ≤ a.
                      –a   |x – t|
                     This is a special case of equation 3.4.3 with b = –a. Solution with 0 < a <2A:
                                          1      d     a
                                 y(x)=               w(t, a)f(t) dt w(x, a)
                                       2M (a) da   –a

                                             a                     ξ
                                         1           d    1   d

                                       –      w(x, ξ)               w(t, ξ)f(t) dt dξ
                                         2  |x|     dξ M (ξ) dξ  –ξ

                                         1 d     a  w(x, ξ)      ξ
                                       –                    w(t, ξ) df(t) dξ,
                                         2 dx  |x|  M (ξ)  –ξ

                     where
                                                     –1

                                                2A                   M(ξ)
                                      M(ξ)=   ln      ,    w(x, ξ)=         ,
                                                 ξ                 π   ξ – x 2
                                                                       2
                     and the prime stands for the derivative.
                     •
                       Reference: I. C. Gohberg and M. G. Krein (1967).
                       a

                            x + t
               5.       ln         y(t) dt = f(x).
                             x – t
                      0
                     Solution:                  a                        t
                                         2 d      F(t) dt           d     sf(s) ds
                                 y(x)= –          √      ,    F(t)=       √      .
                                         π dx       2   2           dt      2   2
                                          2
                                               x   t – x                0   t – s
                     •
                       Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).
                       b

                           1+ λx
               6.         ln        y(t) dt = f(x).
                           1+ λt
                      a
                     This is a special case of equation 3.8.3 with g(x) = ln(1 + λx).
                        Solution:
                                                    1 d
                                             y(x)=       (1 + λx)f (x) .

                                                                 x
                                                   2λ dx
                        The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 ◦
                     of equation 3.8.3).
                         b
                           β
               7.         ln x – ln t y(t) dt = f(x),  0 < β <1.
                                β
                      a
                                                               β
                     This is a special case of equation 3.8.3 with g(x)=ln x.
                       b
                           y(t)
               8.                dt = f(x),    0 < β <1.
                      a |ln(x/t)| β
                     This is a special case of equation 3.8.7 with g(x)=ln x + A, where A is an arbitrary number.
                 © 1998 by CRC Press LLC




               © 1998 by CRC Press LLC
                                                                                                             Page 218
   234   235   236   237   238   239   240   241   242   243   244