Page 243 - Handbook Of Integral Equations
P. 243

b

               8.        A sin λ|x – t| + B sin µ|x – t|  y(t) dt = f(x),  –∞ < a < b < ∞.
                      a
                     Let us remove the modulus in the integrand and differentiate the equation with respect to x
                     twice to obtain
                                            b
                                                2               2
                          2(Aλ + Bµ)y(x) –   Aλ sin λ|x – t| + Bµ sin µ|x – t|  y(t) dt = f (x).  (1)
                                                                                    xx
                                          a

                     Eliminating the integral term with sin µ|x – t| from (1) with the aid of the original equation,
                     we find that
                                                       b

                                                   2
                                                                                  2
                                               2



                            2(Aλ + Bµ)y(x)+ A(µ – λ )   sin λ|x – t| y(t) dt = f (x)+ µ f(x).  (2)
                                                                          xx
                                                      a
                     For Aλ+Bµ = 0, this is an equation of the form 3.5.7 and for Aλ+Bµ ≠ 0, this is an equation
                     of the form 4.5.29.
                        The right-hand side f(x) must satisfy certain relations, which can be obtained by setting
                     x = a and x = b in the original equation (a similar procedure is used in 3.5.7).
                         b

               9.         sin(λx) – sin(λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x) = sin(λx).
                        Solution:

                                                      1 d    f (x)

                                                              x
                                               y(x)=               .
                                                     2λ dx cos(λx)
                                                                                           ◦
                     The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 of
                     equation 3.8.3).
                         a

               10.        sin(βx) – sin(µt) y(t) dt = f(x),  β >0,  µ >0.

                      0
                     This is a special case of equation 3.8.4 with g(x) = sin(βx) and λ = µ/β.
                       b

                          3


               11.      sin λ|x – t| y(t) dt = f(x).
                      a
                                      3
                                            1
                     Using the formula sin β = – sin 3β +  3  sin β, we arrive at an equation of the form 3.5.8:
                                            4       4
                                    b

                                        1              3
                                      – A sin 3λ|x – t| + A sin λ|x – t| y(t) dt = f(x).
                                       4               4
                                    a
                          n
                       b

               12.          A k sin λ k |x – t| y(t) dt = f(x),  –∞ < a < b < ∞.
                      a
                         k=1
                      ◦
                     1 . Let us remove the modulus in the kth summand of the integrand:
                               b                     x                    b

                      I k (x)=  sin λ k |x – t| y(t) dt =  sin[λ k (x – t)]y(t) dt +  sin[λ k (t – x)]y(t) dt. (1)
                             a                     a                    x
                     Differentiating (1) with respect to x yields
                                      x                       b

                            I = λ k   cos[λ k (x – t)]y(t) dt – λ k  cos[λ k (t – x)]y(t) dt,
                             k
                                    a                       x                               (2)
                                              x                       b
                            I =2λ k y(x) – λ 2 k  sin[λ k (x – t)]y(t) dt – λ 2 k  sin[λ k (t – x)]y(t) dt,

                             k
                                             a                      x
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 222
   238   239   240   241   242   243   244   245   246   247   248