Page 241 - Handbook Of Integral Equations
P. 241

3.4-3. An Equation Containing the Unknown Function of a Complicated Argument

                       1


               15.      A ln t + B)y(xt) dt = f(x).
                      0
                     The substitution ξ = xt leads to an equation of the form 1.9.3 with g(x)= –A ln x:
                                           x


                                             A ln ξ – A ln x + B y(ξ) dξ = xf(x).
                                          0
               3.5. Equations Whose Kernels Contain Trigonometric
                      Functions

                 3.5-1. Kernels Containing Cosine
                       ∞

               1.        cos(xt)y(t) dt = f(x).
                      0
                                   2     ∞
                     Solution: y(x)=     cos(xt)f(t) dt.
                                   π  0
                        Up to constant factors, the function f(x) and the solution y(t) are the Fourier cosine
                     transform pair.
                     •
                       References: H. Bateman and A. Erd´ elyi (vol. 1, 1954), V. A. Ditkin and A. P. Prudnikov (1965).
                         b

               2.         cos(λx) – cos(λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x) = cos(λx).
                        Solution:
                                                      1 d    f (x)

                                                              x
                                               y(x)= –              .
                                                      2λ dx sin(λx)
                     The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 of
                                                                                           ◦
                     equation 3.8.3).
                       a


               3.         cos(βx) – cos(µt) y(t) dt = f(x),  β >0,  µ >0.

                      0
                     This is a special case of equation 3.8.4 with g(x) = cos(βx) and λ = µ/β.
                         b
                           k
               4.         cos x – cos t y(t) dt = f(x),  0 < k <1.
                                  k
                      a
                                                                k
                     This is a special case of equation 3.8.3 with g(x) = cos x.
                        Solution:
                                                    1 d      f (x)

                                                              x
                                            y(x)= –                   .
                                                   2k dx sin x cos k–1  x
                                                                                           ◦
                     The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 of
                     equation 3.8.3).
                         b     y(t)
               5.                         dt = f(x),   0 < k <1.
                      a |cos(λx) – cos(λt)| k
                     This is a special case of equation 3.8.7 with g(x) = cos(λx)+ β, where β is an arbitrary
                     number.

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 220
   236   237   238   239   240   241   242   243   244   245   246