Page 242 - Handbook Of Integral Equations
P. 242

3.5-2. Kernels Containing Sine



                       ∞
               6.        sin(xt)y(t) dt = f(x).
                      0
                                   2     ∞
                     Solution: y(x)=     sin(xt)f(t) dt.
                                   π  0
                        Up to constant factors, the function f(x) and the solution y(t) are the Fourier sine transform
                     pair.

                     •
                       References: H. Bateman and A. Erd´ elyi (vol. 1, 1954), V. A. Ditkin and A. P. Prudnikov (1965).

                         b

               7.       sin λ|x – t| y(t) dt = f(x),  –∞ < a < b < ∞.
                      a
                      ◦
                     1 . Let us remove the modulus in the integrand:
                                      x                   b
                                      sin[λ(x – t)]y(t) dt +  sin[λ(t – x)]y(t) dt = f(x).  (1)
                                    a                   x

                     Differentiating (1) with respect to x twice yields

                                         x                      b

                            2λy(x) – λ 2  sin[λ(x – t)]y(t) dt – λ 2  sin[λ(t – x)]y(t) dt = f (x).  (2)
                                                                                  xx
                                       a                      x
                        Eliminating the integral terms from (1) and (2), we obtain the solution


                                                    1           2
                                              y(x)=    f (x)+ λ f(x) .                      (3)

                                                        xx
                                                    2λ
                     2 . The right-hand side f(x) of the integral equation must satisfy certain relations. By setting
                      ◦
                     x = a and x = b in (1), we obtain two corollaries
                                  b                            b
                                  sin[λ(t – a)]y(t) dt = f(a),  sin[λ(b – t)]y(t) dt = f(b).  (4)
                                a                            a

                     Substituting solution (3) into (4) followed by integrating by parts yields the desired conditions
                     for f(x):
                                      sin[λ(b – a)]f (b) – λ cos[λ(b – a)]f(b)= λf(a),

                                                 x
                                                                                            (5)

                                      sin[λ(b – a)]f (a)+ λ cos[λ(b – a)]f(a)= –λf(b).
                                                 x
                        The general form of the right-hand side of the integral equation is given by
                                                f(x)= F(x)+ Ax + B,                         (6)

                     where F(x) is an arbitrary bounded twice differentiable function, and the coefficients A and B
                     are expressed in terms of F(a), F(b), F (a), and F (b) and can be determined by substituting


                                                             x
                                                    x
                     formula (6) into conditions (5).
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 221
   237   238   239   240   241   242   243   244   245   246   247