Page 246 - Handbook Of Integral Equations
P. 246

3.5-5. Kernels Containing a Combination of Trigonometric Functions


                       ∞


               25.       cos(xt) + sin(xt) y(t) dt = f(x).
                      –∞
                     Solution:
                                               1     ∞
                                         y(x)=        cos(xt) + sin(xt) f(t) dt.
                                               2π
                                                   –∞
                     Up to constant factors, the function f(x) and the solution y(t) are the Hartley transform pair.
                     •
                       Reference: D. Zwillinger (1989).

                       ∞


               26.       sin(xt) – xt cos(xt) y(t) dt = f(x).
                      0
                                                                                3
                     This equation can be reduced to a special case of equation 3.7.1 with ν = .
                                                                                2
                        Solution:
                                               2     ∞  sin(xt) – xt cos(xt)
                                        y(x)=                        f(t) dt.
                                                            2 2
                                               π  0        x t
                 3.5-6. Equations Containing the Unknown Function of a Complicated Argument

                       π/2

               27.        y(ξ) dt = f(x),  ξ = x sin t.
                      0
                     Schl¨ omilch equation.
                        Solution:
                                                        π/2
                                           2
                                     y(x)=    f(0) + x   f (ξ) dt ,   ξ = x sin t.

                                                          ξ
                                           π
                                                      0
                     •
                       References: E. T. Whittaker and G. N. Watson (1958), F. D. Gakhov (1977).
                         π/2
                                                   k
               28.        y(ξ) dt = f(x),  ξ = x sin t.
                      0
                     Generalized Schl¨ omilch equation.
                        This is a special case of equation 3.5.29 for n = 0 and m =0.
                        Solution:

                                                        x
                                        2k  k–1 d   1                          k
                                  y(x)=   x k     x k    sin tf(ξ) dt ,  ξ = x sin t.
                                        π      dx     0
                         π/2
                                                        k
                            λ
               29.        sin ty(ξ) dt = f(x),  ξ = x sin t.
                      0
                     This is a special case of equation 3.5.29 for m =0.
                        Solution:
                                     2k  k–λ–1 d     λ+1     x  λ+1  	            k
                               y(x)=   x  k      x k     sin  tf(ξ) dt ,   ξ = x sin t.
                                     π       dx        0




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 225
   241   242   243   244   245   246   247   248   249   250   251