Page 249 - Handbook Of Integral Equations
P. 249

b

               7.       ln sin(λx) – sin(λt) y(t) dt = f(x).


                      a
                     This is a special case of equation 1.8.9 with g(x) = sin(λx).
                         a     sin    1 A
               8.       ln        1 2    y(t) dt = f(x),  –a ≤ x ≤ a.
                      –a   2 sin  |x – t|
                                2
                     Solution with 0 < a < A:

                                          1      d     a
                                 y(x)=               w(t, a)f(t) dt w(x, a)
                                       2M (a) da   –a

                                             a                     ξ

                                         1           d    1   d
                                       –      w(x, ξ)               w(t, ξ)f(t) dt dξ
                                         2  |x|     dξ M (ξ) dξ  –ξ

                                         1 d     a  w(x, ξ)      ξ
                                       –                    w(t, ξ) df(t) dξ,
                                         2 dx  |x|  M (ξ)  –ξ

                     where the prime stands for the derivative with respect to the argument and
                                                    –1
                                              1    
	                    1
                                           sin  2  A                 cos  2  ξ M(ξ)
                                M(ξ)= ln        1     ,    w(x, ξ)=  √             .
                                           sin  ξ                  π 2 cos x – 2 cos ξ
                                              2
                     •
                       Reference: I. C. Gohberg and M. G. Krein (1967).
               3.7. Equations Whose Kernels Contain Special
                      Functions

                 3.7-1. Kernels Containing Bessel Functions

                       ∞

                                                      1
               1.        tJ ν (xt)y(t) dt = f(x),  ν > – .
                                                      2
                      0
                     Here J ν is the Bessel function of the first kind.
                        Solution:

                                                      ∞
                                               y(x)=    tJ ν (xt)f(t) dt.
                                                      0
                        The function f(x) and the solution y(t) are the Hankel transform pair.
                     •
                       Reference: V. A. Ditkin and A. P. Prudnikov (1965).
                       b


               2.         J ν (λx) – J ν (λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x)= J ν (λx), where J ν is the Bessel function
                     of the first kind.
                         b

               3.         Y ν (λx) – Y ν (λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x)= Y ν (λx), where Y ν is the Bessel function
                     of the second kind.



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 228
   244   245   246   247   248   249   250   251   252   253   254