Page 248 - Handbook Of Integral Equations
P. 248

a            1
                              sinh  A

               3.       ln         1 2    y(t) dt = f(x),  –a ≤ x ≤ a.
                      –a   2 sinh  2 |x – t|
                     Solution with 0 < a < A:
                                          1      d     a
                                 y(x)=               w(t, a)f(t) dt w(x, a)
                                       2M (a) da   –a

                                             a                     ξ
                                         1           d    1   d

                                       –      w(x, ξ)               w(t, ξ)f(t) dt dξ
                                         2  |x|     dξ M (ξ) dξ  –ξ

                                         1 d     a  w(x, ξ)      ξ
                                       –                    w(t, ξ) df(t) dξ,
                                         2 dx  |x|  M (ξ)  –ξ

                     where the prime stands for the derivative with respect to the argument and
                                                    –1
                                              1    
	                     1
                                         sinh  2 A                   cosh  2 x M(ξ)
                              M(ξ)= ln          1     ,   w(x, ξ)=  √               .
                                         sinh  ξ                   π 2 cosh ξ – 2 cosh x
                                              2
                     •
                       Reference: I. C. Gohberg and M. G. Krein (1967).
                         b

               4.       ln tanh(λx) – tanh(λt) y(t) dt = f(x).


                      a
                     This is a special case of equation 1.8.9 with g(x) = tanh(λx).
                         a
                                 1
               5.       ln coth  |x – t|  y(t) dt = f(x),  –a ≤ x ≤ a.
                                4
                      –a
                     Solution:                      a
                                          1     d
                                 y(x)=               w(t, a)f(t) dt w(x, a)
                                       2M (a) da   –a

                                             a                     ξ
                                         1           d    1   d

                                       –      w(x, ξ)               w(t, ξ)f(t) dt dξ
                                         2  |x|     dξ M (ξ) dξ  –ξ

                                         1 d     a  w(x, ξ)      ξ
                                       –                    w(t, ξ) df(t) dξ,
                                         2 dx  |x|  M (ξ)  –ξ

                     where the prime stands for the derivative with respect to the argument and
                                  P –1/2 (cosh ξ)                       1
                           M(ξ)=             ,    w(x, ξ)=             √               ,
                                  Q –1/2 (cosh ξ)          πQ –1/2 (cosh ξ) 2 cosh ξ – 2 cosh x
                     and P –1/2 (cosh ξ) and Q –1/2 (cosh ξ) are the Legendre functions of the first and second kind,
                     respectively.
                     •
                       Reference: I. C. Gohberg and M. G. Krein (1967).

                 3.6-2. Kernels Containing Logarithmic and Trigonometric Functions


                         b

               6.       ln cos(λx) – cos(λt) y(t) dt = f(x).


                      a
                     This is a special case of equation 1.8.9 with g(x) = cos(λx).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 227
   243   244   245   246   247   248   249   250   251   252   253