Page 250 - Handbook Of Integral Equations
P. 250

3.7-2. Kernels Containing Modified Bessel Functions


                         b

               4.         I ν (λx)– I ν (λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x)= I ν (λx), where I ν is the modified Bessel
                     function of the first kind.
                         b

               5.         K ν (λx)– K ν (λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x)= K ν (λx), where K ν is the modified Bessel
                     function of the second kind (the Macdonald function).

                       ∞  √

               6.          zt K ν (zt)y(t) dt = f(z).
                      0
                     Here K ν is the modified Bessel function of the second kind.
                        Up to a constant factor, the left-hand side of this equation is the Meijer transform of y(t)
                     (z is treated as a complex variable).
                        Solution:
                                                 1     c+i∞  √
                                           y(t)=           zt I ν (zt)f(z) dz.
                                                πi
                                                    c–i∞
                     For specific f(z), one may use tables of Meijer integral transforms to calculate the integral.
                     •
                       Reference: V. A. Ditkin and A. P. Prudnikov (1965).

                       ∞


               7.        K 0 |x – t| y(t) dt = f(x).
                      –∞
                     Here K 0 is the modified Bessel function of the second kind.
                        Solution:
                                                   2    
    ∞
                                              1   d
                                      y(x)= –        – 1      K 0 |x – t| f(t) dt.
                                             π 2  dx 2
                                                           –∞
                     •
                       Reference: D. Naylor (1986).

                 3.7-3. Other Kernels
                            √
                         a  2 xt  
  y(t) dt
               8.       K                 = f(x).
                      0     x + t   x + t
                                 1
                                         dt
                     Here K(z)=                    is the complete elliptic integral of the first kind.
                                               2 2
                                         2
                                0    (1 – t )(1 – z t )
                        Solution:
                                                a                         t

                                         4 d      tF(t) dt          d     sf(s) ds
                                 y(x)= –          √      ,    F(t)=       √      .
                                          2
                                         π dx  x   t – x 2          dt  0   t – s 2
                                                                            2
                                                    2
                     •
                       Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 229
   245   246   247   248   249   250   251   252   253   254   255