Page 258 - Handbook Of Integral Equations
P. 258

∞

               15.       K(x – t)y(t) dt = f(x).
                      –∞
                     The Fourier transform is used to solve this equation.
                     1 . Solution:
                      ◦
                                                           f(u)
                                                    1     ∞ ˜   iux
                                             y(x)=             e   du,
                                                           ˜
                                                   2π  –∞ K(u)
                                      1     ∞                     1     ∞
                               ˜                 –iux      ˜                   –iux
                              f(u)= √        f(x)e   dx,  K(u)= √        K(x)e    dx.
                                      2π  –∞                       2π  –∞
                        The following statement is valid. Let f(x) ∈ L 2 (–∞, ∞) and K(x) ∈ L 1 (–∞, ∞). Then
                     for a solution y(x) ∈ L 2 (–∞, ∞) of the integral equation to exist, it is necessary and sufficient
                             ˜
                         ˜
                     that f(u)/K(u) ∈ L 2 (–∞, ∞).
                     2 . Let the function P(s)defined by the formula
                      ◦
                                                 1       ∞  –st
                                                     =    e  K(t) dt
                                                P(s)
                                                       –∞
                     be a polynomial of degree n with real roots of the form
                                                    s       s          s

                                         P(s)= 1 –      1 –    ... 1 –    .
                                                   a 1     a 2        a n
                     Then the solution of the integral equation is given by

                                                                   d
                                             y(x)= P(D)f(x),  D =    .
                                                                  dx
                     •
                       References: I. I. Hirschman and D. V. Widder (1955), V. A. Ditkin and A. P. Prudnikov (1965).
                       ∞

               16.       K(x – t)y(t) dt = f(x).
                      0
                     The Wiener–Hopf equation of the first kind. This equation is discussed in Subsection 10.5-1
                     in detail.


                                                   b
                 3.8-4. Other Equations of the Form  K(x, t)y(t) dt = F (x)
                                                 a
                       ∞

               17.       K(ax – t)y(t) dt = Ae λx .
                      –∞
                     Solution:
                                         A       λ            ∞           λ
                                   y(x)=   exp   x ,    B =     K(z)exp – z dz.
                                         B     a                          a
                                                             –∞
                       ∞

               18.       K(ax – t)y(t) dt = f(x).
                      –∞
                     The substitution z = ax leads to an equation of the form 3.8.15:
                                               ∞

                                                 K(z – t)y(t) dt = f(z/a).
                                              –∞



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 237
   253   254   255   256   257   258   259   260   261   262   263