Page 260 - Handbook Of Integral Equations
P. 260

x
                       ∞
                             β
               25.       g      y(t) dt = f(x),  β >0,   λ >0.
                      0     t λ
                     By setting
                         x = e z/β ,  t = e τ/λ ,  y(t)= e –τ/λ w(τ),  g(ξ)= G(ln ξ),  f(ξ)=  1  F(β ln ξ),
                                                                                 λ
                     we arrive at an integral equation with difference kernel of the form 3.8.15:
                                                ∞

                                                  G(z – τ)w(τ) dτ = F(z).
                                               –∞
                                            b

                 3.8-5. Equations of the Form  K(x, t)y(···) dt = F (x)
                                            a
                       b

               26.      f(t)y(xt) dt = Ax + B.
                      a
                     Solution:
                                        A     B            b              b
                                  y(x)=   x +  ,    I 0 =  f(t) dt,  I 1 =  tf(t) dt.
                                        I 1  I 0         a               a
                       b

                                        β
               27.      f(t)y(xt) dt = Ax .
                      a
                     Solution:
                                                 A  β            b   β
                                           y(x)=   x ,    B =    f(t)t dt.
                                                 B             a
                         b
               28.      f(t)y(xt) dt = A ln x + B.
                      a
                     Solution:
                                                   y(x)= p ln x + q,
                     where
                                  A       B   AI l           b              b
                              p =  ,  q =   –   2  ,  I 0 =  f(t) dt,  I l =  f(t)ln tdt.
                                 I 0      I 0  I           a              a
                                                0
                         b
                                        β
               29.      f(t)y(xt) dt = Ax ln x.
                      a
                     Solution:
                                                                 β
                                                        β
                                                y(x)= px ln x + qx ,
                     where
                                  A        AI 2           b   β            b   β
                              p =  ,  q = –  2  ,  I 1 =  f(t)t dt,  I 2 =  f(t)t ln tdt.
                                 I 1        I           a                a
                                            1
                       b

               30.      f(t)y(xt) dt = A cos(ln x).
                      a
                     Solution:
                                               AI c            AI s
                                        y(x)=       cos(ln x)+      sin(ln x),
                                                               2
                                               2
                                              I + I 2         I + I 2
                                               c   s          c   s
                                            b                     b
                                     I c =  f(t) cos(ln t) dt,  I s =  f(t) sin(ln t) dt.
                                          a                     a

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 239
   255   256   257   258   259   260   261   262   263   264   265