Page 428 - Handbook Of Integral Equations
P. 428

b

                 6.8-3. Equations of the Form y(x)+  K(x, t)G t, y(t) dt = F (x)
                                                  a
                               b

               27.   y(x)+    f t, y(t) dt = g(x).
                            a
                     A solution: y(x)= g(x)+ λ, where λ is determined by the algebraic (or transcendental)
                     equation
                                                              b


                                      λ + F(λ)=0,     F(λ)=    f t, g(t)+ λ dt.
                                                             a
                             b



               28.   y(x)+    e λ(x–t) f t, y(t) dt = g(x).
                            a
                     A solution: y(x)= βe λx  + g(x), where λ is determined by the algebraic (or transcendental)
                     equation
                                                            b


                                   β + F(β)=0,     F(β)=    e –λt f t, βe λt  + g(t) dt.
                                                          a
                             b


               29.   y(x)+    g(x)f t, y(t) dt = h(x).
                            a
                     A solution: y(x)= λg(x)+ h(x), where λ is determined by the algebraic (or transcendental)
                     equation
                                                            b


                                     λ + F(λ)=0,    F(λ)=    f t, λg(t)+ h(t) dt.
                                                           a
                             b


               30.   y(x)+    (Ax + Bt)f t, y(t) dt = g(x).
                            a
                     A solution: y(x)= g(x)+ λx + µ, where the constants λ and µ are determined from the
                     algebraic (or transcendental) system
                                 b                                b


                          λ + A   f t, g(t)+ λt + µ dt =0,  µ + B  tf t, g(t)+ λt + µ dt =0.
                                a                                a
                             b


               31.   y(x)+    cosh(λx + µt)f t, y(t) dt = h(x).
                            a
                     Using the formula cosh(λx + µt) = cosh(λx) cosh(µt) + sinh(µt) sinh(λx), we arrive at an
                     equation of the form 6.8.39:
                                        b

                                y(x)+    cosh(λx)f 1 t, y(t) + sinh(λx)f 2 t, y(t)  dt = h(x),
                                       a

                               f 1 t, y(t) = cosh(µt)f t, y(t) ,  f 2 t, y(t) = sinh(µt)f t, y(t) .
                               b

               32.   y(x)+    sinh(λx + µt)f t, y(t) dt = h(x).
                            a
                     Using the formula sinh(λx + µt) = cosh(λx) sinh(µt) + cosh(µt) sinh(λx), we arrive at an
                     equation of the form 6.8.39:
                                        b

                                y(x)+    cosh(λx)f 1 t, y(t) + sinh(λx)f 2 t, y(t)  dt = h(x),
                                       a

                               f 1 t, y(t) = sinh(µt)f t, y(t) ,  f 2 t, y(t) = cosh(µt)f t, y(t) .



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 408
   423   424   425   426   427   428   429   430   431   432   433