Page 432 - Handbook Of Integral Equations
P. 432

b

                 6.8-4. Equations of the Form y(x)+  G x, t, y(t) dt = F (x)
                                                  a
                               b

               39.   y(x)+    g 1 (x)f 1 t, y(t) + g 2 (x)f 2 t, y(t)  dt = h(x).
                            a
                     A solution:
                                            y(x)= h(x)+ λ 1 g 1 (x)+ λ 2 g 2 (x),

                     where the constants λ 1 and λ 2 are determined from the algebraic (or transcendental) system

                                              b

                                       λ 1 +  f 1 t, h(t)+ λ 1 g 1 (t)+ λ 2 g 2 (t) dt =0,
                                            a
                                              b

                                       λ 2 +  f 2 t, h(t)+ λ 1 g 1 (t)+ λ 2 g 2 (t) dt =0.
                                            a
                                n
                             b

               40.   y(x)+        g k (x)f k t, y(t)  dt = h(x).
                            a
                               k=1
                     A solution:
                                                           n

                                               y(x)= h(x)+   λ k g k (x),
                                                          k=1
                     where the coefficients λ k are determined from the algebraic (or transcendental) system

                                        b          n


                                λ m +   f m t, h(t)+  λ k g k (t) dt =0;  m =1, ... , n.
                                      a
                                                   k=1
                     Different roots of this system generate different solutions of the integral equation.
                     •
                       Reference: A. F. Verlan’ and V. S. Sizikov (1986).

                                                         b
                 6.8-5. Equations of the Form F x, y(x) +  G x, t, y(x), y(t) dt =0
                                                       a
                             b


               41.   y(x)+    y(x)f t, y(t) dt = g(x).
                            a
                     A solution: y(x)= λg(x), where λ is determined by the algebraic (or transcendental) equation
                                                                  b

                                     λ + λF(λ) – 1=0,    F(λ)=    f t, λg(t) dt.
                                                                a
                             b


               42.   y(x)+    g(x)y(x)f t, y(t) dt = h(x).
                            a
                                       h(x)
                     A solution: y(x)=       , where λ is determined from the algebraic (or transcendental)
                                     1+ λg(x)
                     equation
                                                            b
                                                                    h(t)
                                     λ – F(λ)=0,    F(λ)=    f t,           dt.
                                                           a      1+ λg(t)


                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 412
   427   428   429   430   431   432   433   434   435   436   437