Page 435 - Handbook Of Integral Equations
P. 435

b

               50.   y(x)+    y(xt)f t, y(t) dt = A cos(ln x).
                            a
                     A solution:
                                             y(x)= p cos(ln x)+ q sin(ln x),
                     where p and q are roots of the following system of algebraic (or transcendental) equations:

                                     b

                               p +   p cos(ln t)+ q sin(ln t) f t, p cos(ln t)+ q sin(ln t) dt = A,
                                   a
                                     b

                               q +   q cos(ln t) – p sin(ln t) f t, p cos(ln t)+ q sin(ln t) dt =0.
                                   a
                               b

               51.   y(x)+    y(xt)f t, y(t) dt = A sin(ln x).
                            a
                     A solution:
                                             y(x)= p cos(ln x)+ q sin(ln x),
                     where p and q are roots of the following system of algebraic (or transcendental) equations:
                                    b


                               p +   p cos(ln t)+ q sin(ln t) f t, p cos(ln t)+ q sin(ln t) dt =0,
                                   a
                                    b


                               q +   q cos(ln t) – p sin(ln t) f t, p cos(ln t)+ q sin(ln t) dt = A.
                                   a
                             b

                                                   β             β
               52.   y(x)+    y(xt)f t, y(t) dt = Ax cos(ln x)+ Bx sin(ln x).
                            a
                     A solution:
                                                   β
                                                               β
                                           y(x)= px cos(ln x)+ qx sin(ln x),                (1)
                     where p and q are roots of the following system of algebraic (or transcendental) equations:
                                 b

                                                                        β
                                   β
                                                             β



                            p +   t p cos(ln t)+ q sin(ln t) f t, pt cos(ln t)+ qt sin(ln t) dt = A,
                                a
                                 b                                                          (2)

                                   β
                                                                        β
                                                            β



                            q +   t q cos(ln t) – p sin(ln t) f t, pt cos(ln t)+ qt sin(ln t) dt = B.
                                a
                     Different solutions of system (2) generate different solutions (1) of the integral equation.
                               b
                                  β
               53.   y(x)+    y xt  f t, y(t) dt = g(x),  β >0.
                            a
                                       k
                     1 .For g(x)=  n    A k x , the equation has a solution of the form
                      ◦
                                 k=1
                                                         n
                                                               k
                                                  y(x)=    B k x ,
                                                        k=1
                     where B k are roots of the algebraic (or transcendental) equations
                                                                b    
   n

                                                          %
                                        %
                                                                  kβ
                              B k + B k F k (B) – A k =0,  F k (B)=  t f t,  B m t m  dt.
                                                               a        m=1
                     Different roots of this system generate different solutions of the integral equation.
                 © 1998 by CRC Press LLC

                © 1998 by CRC Press LLC
                                                                                                             Page 415
   430   431   432   433   434   435   436   437   438   439   440