Page 438 - Handbook Of Integral Equations
P. 438

b

               59.   y(x)+    y(x – t)f t, y(t) dt = A sin λx.
                            a
                     A solution:
                                               y(x)= p sin λx + q cos λx,                   (1)
                     where p and q are roots of the following system of algebraic (or transcendental) equations:
                                       b


                                  p +   (p cos λt + q sin λt)f t, p sin λt + q cos λt dt = A,
                                      a
                                       b                                                    (2)


                                  q +   (q cos λt – p sin λt)f t, p sin λt + q cos λt dt =0.
                                      a
                     Different solutions of system (2) generate different solutions (1) of the integral equation.
                             b


               60.   y(x)+    y(x – t)f t, y(t) dt = A cos λx.
                            a
                     A solution:
                                               y(x)= p sin λx + q cos λx,
                     where p and q are roots of the following system of algebraic (or transcendental) equations:
                                        b

                                  p +   (p cos λt + q sin λt)f t, p sin λt + q cos λt dt =0,
                                      a
                                        b

                                  q +   (q cos λt – p sin λt)f t, p sin λt + q cos λt dt = A.
                                      a
                               b
                                                   µx
               61.   y(x)+    y(x – t)f t, y(t) dt = e  (A sin λx + B cos λx).
                            a
                     A solution:
                                                   µx
                                             y(x)= e (p sin λx + q cos λx),                 (1)
                     where p and q are roots of the following system of algebraic (or transcendental) equations:
                                   b



                              p +   (p cos λt + q sin λt)e –µt f t, pe µt  sin λt + qe µt  cos λt dt = A,
                                  a
                                   b                                                        (2)



                              q +   (q cos λt – p sin λt)e –µt f t, pe µt  sin λt + qe µt  cos λt dt = B.
                                  a
                     Different solutions of system (2) generate different solutions (1) of the integral equation.
                             b


               62.   y(x)+    y(x – t)f t, y(t) dt = g(x).
                            a
                      ◦
                     1 .For g(x)=  n    A k exp(λ k x), the equation has a solution of the form
                                 k=1
                                                      n

                                                y(x)=    B k exp(λ k x),
                                                      k=1
                     where the constants B k are determined from the nonlinear algebraic (or transcendental) system
                                                  %
                                        B k + B k F k (B) – A k =0,  k =1, ... , n,
                                                              n
                                                        b
                                                 %
                            %
                            B = {B 1 , ... , B n },  F k (B)=  f t,  B m exp(λ m t) exp(–λ k t) dt.
                                                      a
                                                             m=1
                     Different solutions of this system generate different solutions of the integral equation.
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 418
   433   434   435   436   437   438   439   440   441   442   443