Page 296 - Handbook of Battery Materials
P. 296
266 9 Metal Hydride Electrodes
the composition is designed to provide a bulk hydride-forming phase (or phases)
but which will form, in situ, a corrosion-resistant surface of semi-passivating oxide
(hydroxide) layers. Lattice expansion is usually reduced relative to the AB 5 hydrides
because of a lower V H . Pressure–composition isotherms of complex AB 2 electrode
materials indicate nonideal behavior.
Acknowledgment
The author wishes to acknowledge the support of Brookhaven National Laboratory
operating under contract No. DE-AC02-98CHI-886 with the Department of Energy.
Further thanks are due to John R. Johnson and Claire Reilly for proof-reading the
manuscript and for offering many helpful suggestions.
References
1. Flanagan, T.B. and Oates, W.A. (1988) 11. Switendick, A.C. (1978) in Hydrogen
in Hydrogen in Intermetallic Compounds in Metals I, Topics in Applied Physics,
I, Topics in Applied Physics, Vol. 63 Vol. 28 (eds G. Alefeld and J. Voklkl),
(ed. L. Schlapbach), Springer-Verlag, Springer-Verlag, New York, p. 101.
New York, p. 49. 12. Gupta, M. and Schlapbach, L. (1988) in
2. Libowitz, G.G. (1965) The Solid State Hydrogen in Intermetallic Compounds I,
Chemistry of Binary Metal Hydrides,W. Topics in Applied Physics, Vol. 63 (ed.
A. Benjamin, New York. L. Schlapbach), Springer-Verlag, New
3. Mueller, W.M., Blackledge, J.P., and York, p. 139.
Libowitz, G.G. (1968) Metal Hydrides, 13. Lundin, C.E., Lynch, F.E., and Magee,
Academic Press, New York. C.B. (1977) J. Less-Common Met., 56,
4. Wicke, E., Brodowsky, H., and 19.
Zuchner, H. (1978) in Hydrogen in 14. Westlake, D.G. (1983) J. Less Common
Metals I, Topics in Applied Physics, Met., 91,1.
Vol. 28 (eds G. Alefeld and J. Voklkl), 15. Switendick, A.C. and Phsik, Z. (117)
Springer-Verlag, New York, p. 101. Chem. N.F., 1979, 89.
5. Reilly, J.J. and Wiswall, R.H. (1968) In- 16. Reilly, J.J. (1978) in Proceedings In-
org. Chem., 7, 2254. ternational Symposium on Hydrides
6. Reilly, J.J. and Wiswall, R.H. (1974) In- for Energy Storage, Gielo, Norway (eds
org. Chem., 13, 218. A.F. Andresen and A.J. Maeland),
7. van Vucht, J.H.N., Kuipers, F.A., and Pergamon Press, New York, p. 301.
Bruning, H.C.A.M. (1970) Philips Res. 17. Lei, Y., Wu, Y., Yanf, Q., Wu, J., and
Rep., 25, 133. Wang, Q. (1994) Z. Phys. Chem., Bd.
8. Gruen, D.N., Mendelsohn, M.H., and 183, S. 379.
Dwight, A.E. (1979) J. Less-Common 18. Tsukahara, M., Takahashi, K.,
Met., 63, 193. Mishima, T., Miyamura, H., Sakai,
9. Reilly, J.J. (1979) Z. Phys. Chem. N. F., T., Kuriyama, N., and Uehara, I. (1995)
117, 155. J. Alloys Compd., 231, 616.
10. Adzic, G.D., Johnson, J.R., Mukerjee, 19. Siegmann, H.C., Schlapbach, L., and
S., McBreen, J., and Reilly, J.J. (1996) Brundle, C.R. (1978) Phys. Rev. Lett.,
Meeting Abstracts of the 189th Meeting of 40, 547.
the Electrochemical Society, Los Angeles, 20. Reilly, J.J. (1983) in Inorganic Syntheses
1996, vol. 96-1, The Electrochemical (ed. S.L. Holt), John Wiley & Sons,
Society, Pennington, NJ, Abstract # 65. Inc., New York, p. 90.