Page 283 - Handbook of Biomechatronics
P. 283
276 Georgios A. Bertos and Evangelos G. Papadopoulos
References
Adamczyk, P.G., Kuo, A.D., 2013. Mechanical and energetic consequences of rolling foot
shape in human walking. J. Exp. Biol. 216 (14), 2722–2731. https://doi.org/10.1242/
jeb.082347.
Adamczyk, P.G., Collins, S.H., Kuo, A.D., 2006. The advantages of a rolling foot in human
walking. J. Exp. Biol. 209 (20), 3953–3963. https://doi.org/10.1242/jeb.02455.
Alexander, R.M., 1992. A model of bipedal locomotion on compliant legs. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 338 (1284), 189–198.
Au, S.K., Herr, H., Weber, J., Martinez-Villalpando, E.C., 2007. Powered ankle-foot pros-
thesis for the improvement of amputee ambulation. Conf. Proc. IEEE Eng. Med. Biol.
Soc. 2007, 3020–3026. https://doi.org/10.1109/IEMBS.2007.4352965.
Au, S., Berniker, M., Herr, H., 2008. Powered ankle-foot prosthesis to assist level-ground
and stair-descent gaits. Neural Netw. 21 (4), 654–666. https://doi.org/10.1016/j.
neunet.2008.03.006.
Bach, T.M., Chapman, A.E., Calvert, T.W., 1983. Mechanical resonance of the human body
during voluntary oscillations about the ankle joint. J. Biomech. 16 (1), 85–90.
Bertos, G.A., 2006. Identification of the Mechanical Impedance of the Human Locomotor
System and Quantification of Shock Absorption Characteristics: With Applications in
Prosthetics (PhD). Northwestern University, Evanston, IL.
Bertos, G.A., Childress, D.S., Gard, S.A., 2005. The vertical mechanical impedance of the
locomotor system during human walking with applications in rehabilitation. In: IEEE
9th International Conference on Rehabilitation Robotics. IEEE, New York,
pp. 380–383.
Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Gunther, M., 2007. Intel-
ligence by mechanics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365 (1850),
199–220. https://doi.org/10.1098/rsta.2006.1911.
Blumentritt, S., Scherer, H.W., Wellershaus, U., Michael, J.W., 1997. Design principles,
biomechanical data and clinical experience with a polycentric knee offering controlled
stance phase knee flexion: a preliminary report. J. Prosthet. Orthot. 9 (1), 18–24.
Branemark, P.I., Adell, R., Breine, U., Hansson, B.O., Lindstrom, J., Ohlsson, A., 1969.
Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast.
Reconstr. Surg. 3 (2), 81–100.
Bro `ggemann, G., Arampatzis, A., Emrich, F., Potthast, W., 2008. Biomechanics of double
transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol.
1(4–5), 220–227.
CAD/CAM SYSTEMS, 2018. Retrieved from: https://opedge.com/ProductDirectory/
CADCAM_Systems.
Cappozzo, A., 1991. The mechanics of human walking. In: Patla, A. (Ed.), Adaptability of
Human Gait Implications for the Control of Locomotion. Elsevier Science Publishers,
North-Holland, pp. 167–186.
Cavagna, G., 1970. Elastic bounce of the body. J. Appl. Physiol. 29, 279–282.
Childress, D.S., 1997. The Interfaces Between Humans and Limb Replacement Compo-
nents. Quintessence Publ Co Inc., Carol Stream, IL.
Childress, D.S., 1998. Control Strategy for Upper-Limb Prostheses. In: Chang, H.K.,
Zhang, Y.T. (Eds.), Proceedings of the 20th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, vol. 20, Pts 1–6—Biomedical Engi-
neering Towards the Year 2000 and Beyond, vol. 20. IEEE, New York, pp. 2273–2275.
Childress, D.S., 2002. Peak of the Vertical Ground Reaction Force is Proportional to Square
of Walking Speed. personal communication.
Childress, D.S., Gard, S.A., 1999. In: Vertical Movement of the Trunk in Human Walking.
Paper Presented at the XVIIth Congress of the International Society of Biomechanics
(ISB), Calgary, Canada, August 8–13th.