Page 288 - Handbook of Biomechatronics
P. 288
Lower-Limb Prosthetics 281
Spanias, J.A., Simon, A.M., Finucane, S.B., Perreault, E.J., Hargrove, L.J., 2018. Online
adaptive neural control of a robotic lower limb prosthesis. J. Neural Eng. 15(1).
016015. https://doi.org/10.1088/1741-2552/aa92a8.
Sup, F., Varol, H.A., Mitchell, J., Withrow, T.J., Goldfarb, M., 2009a. Preliminary
evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE
ASME Trans. Mechatron. 14 (6), 667–676. https://doi.org/10.1109/TMECH.2009.
2032688.
Sup, F., Varol, H.A., Mitchell, J., Withrow, T.J., Goldfarb, M., 2009b. Self-contained
powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee.
IEEE Int. Conf. Rehabil. Robot. 2009, 638–644. https://doi.org/10.1109/ICORR.
2009.5209625.
Sutherland, D.H., Kaufman, K.R., Moitoza, J.R., 1994. Human locomotion. In: Rose, J.,
Gamble, J.G. (Eds.), Human Walking. In: vol. 2. Williams & Wilkins, Baltimore, MD,
pp. 23–44.
Van Jaarsveld, H.W., Grootenboer, H.J., De Vries, J., 1990a. Accelerations due to impact at
heel strike using below-knee prosthesis. Prosthetics Orthot. Int. 14 (2), 63–66.
Van Jaarsveld, H.W., Grootenboer, H.J., de Vries, J., Koopman, H.F., 1990b. Stiffness and
hysteresis properties of some prosthetic feet. Prosthetics Orthot. Int. 14 (3), 117–124.
Varol, H.A., Sup, F., Goldfarb, M., 2010. Multiclass real-time intent recognition of a
powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57 (3), 542–551. https://
doi.org/10.1109/TBME.2009.2034734.
Versluys, R., Desomer, A., Lenaerts, G., Van Damme, M., Beyl, P., Van der Perre, G., …
Lefeber, D., 2008. A pneumatically powered below-knee prosthesis: design specifica-
tions and first experiments with an amputee. In: 2nd IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (Biorob 2008), Vols 1 and 2,
p. 372. https://doi.org/10.1109/Biorob.2008.4762842.
Versluys, R., Beyl, P., Van Damme, M., Desomer, A., Van Ham, R., Lefeber, D., 2009.
Prosthetic feet: state-of-the-art review and the importance of mimicking human
ankle-foot biomechanics. Disabil. Rehabil. Assist. Technol. 4 (2), 65–75. https://doi.
org/10.1080/17483100802715092.
Vertriest, S., Coorevits, P., Hagberg, K., Branemark, R., Haggstrom, E., Vanderstraeten, G.,
Frossard, L., 2015. Static load bearing exercises of individuals with transfemoral
amputation fitted with an osseointegrated implant: reliability of kinetic data. IEEE Trans.
Neural Syst. Rehabil. Eng. 23 (3), 423–430. https://doi.org/10.1109/TNSRE.2014.
2337956.
Vertriest, S., Coorevits, P., Hagberg, K., Branemark, R., Haggstrom, E.E.,
Vanderstraeten, G., Frossard, L.A., 2017. Static load bearing exercises of individuals with
transfemoral amputation fitted with an osseointegrated implant: Loading compliance.
Prosthetics Orthot. Int. 41 (4), 393–401. https://doi.org/10.1177/03093646166
40949.
Waters, R.L., Perry, J., Antonelli, D., Hislop, H., 1976. Energy cost of walking of amputees:
the influence of level of amputation. J. Bone Joint Surg. Am. 58 (1), 42–46.
Webster, J.B., Hakimi, K.N., Williams, R.M., Turner, A.P., Norvell, D.C.,
Czerniecki, J.M., 2012. Prosthetic fitting, use, and satisfaction following lower-limb
amputation: a prospective study. J. Rehabil. Res. Dev. 49 (10), 1493–1504. https://
doi.org/10.1682/Jrrd.2012.01.0001.
Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., Beckerle, P., 2016. Active lower
limb prosthetics: a systematic review of design issues and solutions. Biomed. Eng. Online
15 (Suppl. 3), 140. https://doi.org/10.1186/s12938-016-0284-9.
Wirta, R.W., Mason, R., Calvo, K., Golbranson, F.L., 1991. Effect on gait using various
prosthetic ankle-foot devices. J. Rehabil. Res. Dev. 28 (2), 13–24.