Page 356 - Handbook of Biomechatronics
P. 356
Upper Extremity Rehabilitation Robots: A Survey 349
1937-33339, 4–14. https://doi.org/10.1109/RBME.2016.2552201. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27071194. http://ieeexplore.ieee.org/docu-
ment/7450169/.
Rahman, M.H., Ochoa-Luna, C., Saad, M., 2015. EMG based control of a robotic exoskel-
eton for shoulder and elbow motion assist. J. Autom. Control Eng. 230137023 (4),
270–276. https://doi.org/10.12720/joace.3.4.270-276. Available from: http://www.
joace.org/index.php?m¼content&c¼index&a¼show&catid¼44&id¼242.
Reinkensmeyer, D.J., 2009. Robotic assistance for upper extremity training after stroke.
In: Studies in Health Technology and Informatics, vol. 145. pp. 25–39.
Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A., Schmit, B.D.,
Rymer, W.Z., 2000. Understanding and treating arm movement impairment after chronic
brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 0748-771137 (6),
653–662. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11321001.
Reinkensmeyer, D.J., Lum, P., Winters, J.M., 2002. Emerging technologies for improving
access to movement therapy following neurologic injury. In: Winters, J., Robinson, C.,
Simpson, R., Vanderheiden, G. (Eds.), Emerging and Accessible Telecommunications,
Information and Healthcare Technologies—Engineering Challenges in Enabling Uni-
versal Access. IEEE Press Available from: http://www.eng.uci.edu/dreinken/
publications/djrresnachapter.pdf.
Ren, Y., Hoon Kang, S., Park, H.-S., Wu, Y.-N., Zhang, L.-Q., 2013. Developing a multi-
joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in
neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 1534-432021 (3),
490–499. https://doi.org/10.1109/TNSRE.2012.2225073. Available from: http://
ieeexplore.ieee.org/document/6335485/.
Richards, C.L., Malouin, F., 2015. Stroke rehabilitation: clinical picture, assessment, and
therapeutic challenge. Prog. Brain Res. 00796123218, 253–280. https://doi.org/
10.1016/bs.pbr.2015.01.003.
Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V., 2005.
Patient-cooperative strategies for robot-aided treadmill training: first experimental
results. IEEE Trans. Neural Syst. Rehabil. Eng. 1534-432013 (3), 380–394. https://
doi.org/10.1109/TNSRE.2005.848628. Available from: http://ieeexplore.ieee.org/
document/1506824/. http://www.ncbi.nlm.nih.gov/pubmed/16200761.
Rocon, E., Belda-Lois, J.M., Ruiz, A.F., Manto, M., Moreno, J.C., Pons, J.L., 2007. Design
and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppres-
sion. IEEE Trans. Neural Syst. Rehabil. Eng. 15 (3), 367–378. https://doi.org/10.1109/
TNSRE.2007.903917. Available from: http://ieeexplore.ieee.org/document/4303108/.
Rosati, G., Gallina, P., Masiero, S., Rossi, A., 2005. Design of a new 5 D.O.F. wire-based
robot for rehabilitation. In: 9th International Conference on Rehabilitation Robotics
(ICORR). IEEE, pp. 430–433. Available from: http://ieeexplore.ieee.org/document/
1501135/.
Rosati, G., Volpe, G., Biondi, A., 2007. Trajectory planning of a two-link rehabilitation robot
arm. In: Proceedings of the 12th IFToMM World Congress, Besancon, France. Available
from: http://www.iftomm.org/iftomm/proceedings/proceedings_WorldCongress/
WorldCongress07/articles/sessions/papers/A884.pdf.
Rosen, J., Perry, J.C., 2007. Upper-limb powered exoskeleton. Int. J. Humanoid Robot.
4 (3), 529–548. https://doi.org/10.1142/S021984360700114X. Available from:
http://www.worldscientific.com/doi/abs/10.1142/S021984360700114X.
Sakurada, T., Kawase, T., Takano, K., Komatsu, T., Kansaku, K., 2013. A BMI-based
occupational therapy assist suit: asynchronous control by SSVEP. Front. Neurosci. 1662-
453X7, 172. https://doi.org/10.3389/fnins.2013.00172. Available from: http://journal.
frontiersin.org/article/10.3389/fnins.2013.00172/abstract. http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid¼PMC3779864. http://www.ncbi.nlm.nih.gov/pubmed/
24068982.