Page 355 - Handbook of Biomechatronics
P. 355
348 Borna Ghannadi et al.
pp. 554–561. https://doi.org/10.1109/ROBOT.2010.5509861. Available from:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber¼5509861.
Oujamaa, L., Relave, I., Froger, J., Mottet, D., Pelissier, J.Y., 2009. Rehabilitation of arm func-
tion after stroke. Literature review. Ann. Phys. Rehabil. Med. 1877065752, 269–293.
https://doi.org/10.1016/j.rehab.2008.10.003.
Patten, C., Dozono, J., Schmidt, S., Jue, M., Lum, P., 2006. Combined functional task practice
anddynamichighintensity resistancetrainingpromotesrecoveryofupper-extremitymotor
function in post-stroke hemiparesis: a case study. J. Neurol. Phys. Ther. 1557-057630 (3),
99–115. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17029654.
Patton, J.L., Dawe, G., Scharver, C., Mussa-Ivaldi, F.A., Kenyon, R., 2004. Robotics and
virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor
function. In: The 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, vol. 4. IEEE, pp. 4840–4843. Available from: http://
ieeexplore.ieee.org/document/1404339/.
Patton, J.L., Kovic, M., Mussa-Ivaldi, F.A., 2006. Custom-designed haptic training for
restoring reaching ability to individuals with poststroke hemiparesis. J. Rehabil. Res.
Dev. 1938-135243 (5), 643–656. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/17123205.
Patton, J.L., Stoykov, M.E., Kovic, M., Mussa-Ivaldi, F.A., 2006. Evaluation of robotic
training forces that either enhance or reduce error in chronic hemiparetic stroke survi-
vors. Exp. Brain Res. 0014-4819168 (3), 368–383. https://doi.org/10.1007/s00221-
005-0097-8. Available from: http://link.springer.com/10.1007/s00221-005-0097-8.
http://www.ncbi.nlm.nih.gov/pubmed/16249912.
P erez-Rodrı ´guez, R., Rodrı ´guez, C., Costa, U ´ ., Ca ´ceres, C., Tormos, J.M., Medina, J.,
Go ´mez, E.J., 2014. Anticipatory assistance-as-needed control algorithm for a multijoint
upper limb robotic orthosis in physical neurorehabilitation. Expert Syst. Appl.
0957417441 (8), 3922–3934. https://doi.org/10.1016/j.eswa.2013.11.047. Available
from: http://linkinghub.elsevier.com/retrieve/pii/S0957417413009895.
Perry, J.C., Rosen, J., Burns, S., 2007. Upper-limb powered exoskeleton design. IEEE/ASME
Trans. Mechatron. 12 (4), 408–417. https://doi.org/10.1109/TMECH.2007.901934.
Available from: http://ieeexplore.ieee.org/document/4291584/.
Pignolo, L., Dolce, G., Basta, G., Lucca, L.F., Serra, S., Sannita, W.G., 2012. Upper limb
rehabilitation after stroke: ARAMIS a “robo-mechatronic” innovative approach and
prototype. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob). IEEE, pp. 1410–1414. Available from: http://
ieeexplore.ieee.org/document/6290868/.
Poli, P., Morone, G., Rosati, G., Masiero, S., 2013. Robotic technologies and rehabil-
itation: new tools for stroke patients’ therapy. Biomed. Res. Int. 23146-
1332013, 153872. https://doi.org/10.1155/2013/153872.Availablefrom: http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid¼PMC3852950. http://www.
ncbi.nlm.nih.gov/pubmed/24350244.
Prisco, G.M., Avizzano, C.A., Calcara, M., Ciancio, S., Pinna, S., Bergamasco, M., 1998.
A virtual environment with haptic feedback for the treatment of motor dexterity disabil-
ities. In: Proceedings. 1998 IEEE International Conference on Robotics and Automa-
tion (Cat. No. 98CH36146), vol. 4. IEEE, pp. 3721–3726. Available from: http://
ieeexplore.ieee.org/document/681418/.
Proietti, T., Jarrasse, N., Roby-Brami, A., Morel, G., 2015. Adaptive control of a robotic
exoskeleton for neurorehabilitation. In: 2015 7th International IEEE/EMBS Confer-
ence on Neural Engineering (NER). IEEE, pp. 803–806. Available from: http://
ieeexplore.ieee.org/document/7146745/.
Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N., 2016. Upper-limb robotic exoskel-
etons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng.