Page 359 - Handbook of Biomechatronics
P. 359

352                                                Borna Ghannadi et al.


          van Delden, A.L.E.Q., Peper, C.L.E., Nienhuys, K.N., Zijp, N.I., Beek, P.J., Kwakkel, G.,
             2013. Unilateral versus bilateral upper limb training after stroke: the upper limb training
             after stroke clinical trial. Stroke 1524-462844 (9), 2613–2616. https://doi.org/10.1161/
             STROKEAHA.113.001969. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
             23868279.
          Van der Linde, R.Q., Lammertse, P., 2003. HapticMaster: a generic force controlled robot
             for  human  interaction.  Ind.  Robot.  30  (6),  515–524.  https://doi.org/
             10.1108/01439910310506783. Available from: http://www.emeraldinsight.com/doi/
             10.1108/01439910310506783.
          Van der Loos, H.F.M., Wagner, J.J., Smaby, N., Chang, K., Madrigal, O., Leifer, L.J.,
             Khatib, O., 1999. ProVAR assistive robot system architecture. In: Proceedings 1999
             IEEE  International  Conference  on  Robotics  and  Automation  (Cat.  No.
             99CH36288C), vol. 1. IEEE, pp. 741–746. Available from: http://ieeexplore.ieee.
             org/document/770063/.
          Venkatakrishnan, A., Francisco, G.E., Contreras-Vidal, J.L., 2014. Applications of brain-
             machine interface systems in stroke recovery and rehabilitation. Curr. Phys. Med.
             Rehabil. Rep. 2 (2), 93–105. https://doi.org/10.1007/s40141-014-0051-4. Available
             from: http://www.ncbi.nlm.nih.gov/pubmed/25110624.
          Wamsley, C., Rai, R., Johnson, M., 2017. High-force haptic rehabilitation robot and
             motor outcomes in chronic stroke. Int. J. Clin. Case Stud. 3 (1) https://doi.org/
             10.15344/2455-2356/2017/115 Available from: https://www.graphyonline.com/
             archives/IJCCS/2017/IJCCS-115/.
          Wei, Y., Bajaj, P., Scheldt, R., Patton, J., 2005. Visual error augmentation for enhancing
             motor learning and rehabilitative relearning. In: Proceedings of the 2005 IEEE 9th
             International Conference on Rehabilitation Robotics, vol. 2005. IEEE, pp. 505–510.
             Available from: http://ieeexplore.ieee.org/document/1501152/.
          Wolbrecht, E.T., Chan, V., Le, V., Cramer, S.C., Reinkensmeyer, D.J., Bobrow, J.E., 2007.
             Real-time computer modeling of weakness following stroke optimizes robotic assistance
             for movement therapy. In: Proceedings of the 3rd International IEEE EMBS Conference
             on Neural Engineering. IEEE, pp. 152–158. Available from: http://ieeexplore.ieee.org/
             document/4227240/.
          Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E., 2008. Optimizing
             compliant, model-based robotic assistance to promote neurorehabilitation. IEEE
             Trans. Neural Syst. Rehabil. Eng. 1534-432016 (3), 286–297. https://doi.org/
             10.1109/TNSRE.2008.918389. Available from: http://ieeexplore.ieee.org/document/
             4451797/.
          Wu, C.-Y., Yang, C.-L., Chen, M.-D., Lin, K.-C., Wu, L.-L., 2013. Unilateral versus bilat-
             eral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a ran-
             domized controlled trial. J. Neuroeng. Rehabil. 1743-000310, 35. https://doi.org/
             10.1186/1743-0003-10-35. Available from: http://www.pubmedcentral.nih.gov/
             articlerender.fcgi?artid¼3640972&tool¼pmcentrez&rendertype¼abstract.
          Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Farina, K.D.D., 2014. Enhanced low-
             latency detection of motor intention from EEG for closed-loop brain-computer
             interfaceapplications.IEEETrans.Biomed. Eng. 61 (2), 288–296. https://doi.
             org/10.1109/TBME.2013.2294203.Availablefrom: http://ieeexplore.ieee.org/
             document/6678728/.
          Yamashita, M., 2014. Robotic rehabilitation system for human upper limbs using guide con-
             trol and manipulability ellipsoid prediction. Proc. Technol. 2212017315, 559–565.
             https://doi.org/10.1016/j.protcy.2014.09.016. Available from: http://linkinghub.
             elsevier.com/retrieve/pii/S2212017314001315.
          Yao, L., Sheng, X., Zhang, D., Jiang, N., Mrachacz-Kersting, N., Zhu, X., Farina, D., 2017.
             A stimulus-independent hybrid BCI based on motor imagery and somatosensory
   354   355   356   357   358   359   360   361   362   363   364