Page 354 - Handbook of Biomechatronics
P. 354
Upper Extremity Rehabilitation Robots: A Survey 347
Morris, S.L., Dodd, K.J., Morris, M.E., 2004. Outcomes of progressive resistance strength
training following stroke: a systematic review. Clin. Rehabil. 0269-215518 (1),
27–39. https://doi.org/10.1191/0269215504cr699oa. Available from: http://journals.
sagepub.com/doi/10.1191/0269215504cr699oa.
Mostafavi, S.M., Mousavi, P., Dukelow, S.P., Scott, S.H., 2015. Robot-based assessment of
motorandproprioceptivefunctionidentifiesbiomarkersforpredictionoffunctionalindepen-
dence measures. J. Neuroeng. Rehabil. 1743-000312 (1), 105. https://doi.org/10.1186/
s12984-015-0104-7.Availablefrom:http://www.jneuroengrehab.com/content/12/1/105.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid¼PMC4661950. http://www.
ncbi.nlm.nih.gov/pubmed/26611144.
Moubarak, S., Pham, M.T., Moreau, R., Redarce, T., 2010. Gravity compensation of
an upper extremity exoskeleton. In: 2010 Annual International Conference of the
IEEE Engineering in Medicine and Biology, vol. 2010. IEEE, pp. 4489–4493. Available
from:http://ieeexplore.ieee.org/document/5626036/. http://www.ncbi.nlm.nih.gov/
pubmed/21095778.
Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J.T., Niazi, I.K., Kostic, V., Pavlovic, A.,
Radovanovic, S., Djuric-Jovicic, M., Agosta, F., Dremstrup, K., Farina, D., 2016. Effi-
cient neuroplasticity induction in chronic stroke patients by an associative brain-
computer interface. J. Neurophysiol. 0022-3077115 (3), 1410–1421. https://doi.org/
10.1152/jn.00918.2015. Available from: http://www.physiology.org/doi/10.1152/jn.
00918.2015.
Muratori, L.M., Lamberg, E.M., Quinn, L., Duff, S.V., 2013. Applying principles of
motor learning and control to upper extremity rehabilitation. J. Hand Ther.
0894113026, 94–103. https://doi.org/10.1016/j.jht.2012.12.007.
Nef, T., Mihelj, M., Riener, R., 2007. ARMin: a robot for patient-cooperative arm therapy.
Med. Biol. Eng. Comput. 0140-011845 (9), 887–900. https://doi.org/10.1007/s11517-
007-0226-6. Available from: http://link.springer.com/10.1007/s11517-007-0226-6.
Nef, T., Guidali, M., Riener, R., 2009. ARMin III—arm therapy exoskeleton with an ergo-
nomic shoulder actuation. Appl. Bionics Biomech. 6 (2), 127–142. https://doi.org/
10.1080/11762320902840179. Available from: http://content.iospress.com/doi/10.
1080/11762320902840179.
Novak, D., Riener, R., 2013. Enhancing patient freedom in rehabilitation robotics using
gaze-based intention detection. In: 2013 IEEE 13th International Conference on Reha-
bilitation Robotics (ICORR). IEEE, pp. 1–6. Available from: http://ieeexplore.ieee.
org/document/6650507/.
Oblak, J., Cikajlo, I., Matjacic, Z., 2010. Universal haptic drive: a robot for arm and
wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18 (3), 293–302. https://
doi.org/10.1109/TNSRE.2009.2034162. Available from: http://ieeexplore.ieee.org/
document/5290020/.
O’Connor, R.J., Jackson, A., Makower, S.G., Cozens, A., Levesley, M., 2015. A proof of
concept study investigating the feasibility of combining iPAM robot assisted rehabilita-
tion with functional electrical stimulation to deliver whole arm exercise in stroke survi-
vors. J. Med. Eng. Technol. 0309-190239 (7), 411–418. https://doi.org/
10.3109/03091902.2015.1088094. Available from: http://www.tandfonline.com/
doi/full/10.3109/03091902.2015.1088094. http://www.ncbi.nlm.nih.gov/pubmed/
26414146.
Oda, K., Isozumi, S., Ohyama, Y., Tamida, K., Kikuchi, T., Furusho, J., 2009. Development
of isokinetic and iso-contractile exercise machine “MEM-MRB” using MR brake.
In: IEEE 11th International Conference on Rehabilitation Robotics (ICORR). IEEE,
pp. 6–11. Available from: http://ieeexplore.ieee.org/document/5209510/.
Ott, C., Mukherjee, R., Nakamura, Y., 2010. Unified impedance and admittance control.
In: 2010 IEEE International Conference on Robotics and Automation (ICRA)