Page 349 - Handbook of Biomechatronics
P. 349

342                                                Borna Ghannadi et al.


             Annual International Conference of the IEEE Engineering in Medicine and Biology
             Society. IEEE, pp. 6277–6280. Available from: http://ieeexplore.ieee.org/document/
             6091549/.
          Frisoli,A.,Loconsole,C.,Leonardis,D.,Banno,F.,Barsotti,M.,Chisari,C.,Bergamasco,M.,
             2012. A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation
             in real-world tasks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1094-
             697742 (6), 1169–1179. https://doi.org/10.1109/TSMCC.2012.2226444. Available
             from: http://ieeexplore.ieee.org/document/6392463/.
          Fulk, G., O’sullivan, S.B., Schmitz, T.J., 2014. Physical Rehabilitation, sixth ed. F.A. Davis
             Company. ISBN 978-0-8036-2579-2.
          Ghannadi, B., Mehrabi, N., Sharif Razavian, R., McPhee, J., 2017. Nonlinear model pre-
             dictive control of an upper extremity rehabilitation robot using a two-dimensional
             human-robot interaction model. In: IEEE/RSJ International Conference on Intelligent
             Robots and Systems (IROS). IEEE, Vancouver, British Columbia, Canada,
             pp. 502–507. Available from: http://ieeexplore.ieee.org/document/8202200/.
          Goodrich,M.A.,Schultz,A.C.,2007.Human-robotinteraction:asurvey.Found.TrendsHum.
             Comput. Interact. 1551-39551 (3), 203–275. https://doi.org/10.1561/1100000005.
             Available from: http://www.nowpublishers.com/article/Details/HCI-005.
          Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I., 2016. Developments in
             hardware systems of active upper-limb exoskeleton robots: a review. Robot. Auton.
             Syst. 0921889075, 203–220. https://doi.org/10.1016/j.robot.2015.10.001. Available
             from: http://www.sciencedirect.com/science/article/pii/S0921889015002274.
          Guidali, M., Schmiedeskamp, M., Klamroth, V., Riener, R., 2009. Assessment and training
             of synergies with an arm rehabilitation robot. In: 2009 IEEE International Conference
             on Rehabilitation Robotics (ICORR). IEEE, pp. 772–776. Available from: http://
             ieeexplore.ieee.org/document/5209516/.
          Guidali, M., Duschau-Wicke, A., Broggi, S., Klamroth-Marganska, V., Nef, T., Riener, R.,
             2011. A robotic system to train activities of daily living in a virtual environment. Med.
             Biol. Eng. Comput. 0140-011849 (10), 1213–1223. https://doi.org/10.1007/s11517-
             011-0809-0. Available from: http://link.springer.com/10.1007/s11517-011-0809-0.
             http://www.ncbi.nlm.nih.gov/pubmed/21796422.
          Guo, S., Zhang, W., Wei, W., Guo, J., Ji, Y., Wang, Y., 2013. A kinematic model of an upper
             limb rehabilitation robot system. In: 2013 IEEE International Conference on
             Mechatronics and Automation. IEEE, pp. 968–973. Available from: http://ieeexplore.
             ieee.org/document/6618046/.
          Gupta, A., O’Malley, M.K., 2006. Design of a haptic arm exoskeleton for training and rehabil-
             itation. IEEE/ASME Trans. Mechatron. 1083-443511 (3), 280–289. https://doi.org/
             10.1109/TMECH.2006.875558. Available from: http://ieeexplore.ieee.org/document/
             1642690/.
          Hatem,S.M.,Saussez,G.,dellaFaille,M.,Prist,V.,Zhang,X.,Dispa,D.,Bleyenheuft,Y.,2016.
             Rehabilitation of motor function after stroke: a multiple systematic review focused ontech-
             niques to stimulate upper extremity recovery. Front. Hum. Neurosci. 1662-516110, 442.
             https://doi.org/10.3389/fnhum.2016.00442. Available from: http://journal.frontiersin.
             org/Article/10.3389/fnhum.2016.00442/abstract. http://www.ncbi.nlm.nih.gov/pubmed
             /27679565.
          Herna ´ndez Arieta, A., Kato, R., Yu, W., Yokoi, H., 2007. The man-machine interaction:
             the influence of artificial intelligence on rehabilitation robotics. In: 50 Years of Artificial
             IntelligenceSpringer, Berlin, Heidelberg, pp. 221–231. Available from: http://link.
             springer.com/10.1007/978-3-540-77296-5_21.
          Hesse, S., Schmidt, H., Werner, C., Bardeleben, A., 2003. Upper and lower extremity
             robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol.
             1350-754016, 705–710. https://doi.org/10.1097/00019052-200312000-00010.
   344   345   346   347   348   349   350   351   352   353   354