Page 348 - Handbook of Biomechatronics
P. 348
Upper Extremity Rehabilitation Robots: A Survey 341
Daly, J.J., Wolpaw, J.R., 2008. Brain-computer interfaces in neurological rehabilitation.
Lancet Neurol. 147444227 (11), 1032–1043. https://doi.org/10.1016/S1474-4422
(08)70223-0. Available from: http://www.sciencedirect.com/science/article/pii/
S1474442208702230?via%3Dihub.
Ding, M., Ueda, J., Ogasawara, T., 2008. Pinpointed muscle force control using a power-
assisting device: system configuration and experiment. In: Proceedings of the 2nd
Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics, BioRob 2008. IEEE, pp. 181–186. Available from: http://
ieeexplore.ieee.org/document/4762829/.
Ding, M., Hirasawa, K., Kurita, Y., Takemura, H., Takamatsu, J., Mizoguchi, H.,
Ogasawara, T., 2010. Pinpointed muscle force control in consideration of human
motion and external force. In: 2010 IEEE International Conference on Robotics and
Biomimetics (ROBIO). IEEE, pp. 739–744. Available from: http://ieeexplore.ieee.
org/document/5723418/.
Dipietro, L., Ferraro, M., Palazzolo, J.J., Krebs, H.I., Volpe, B.T., Hogan, N., 2005.
Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE
Trans. Neural Syst. Rehabil. Eng. 1534-432013 (3), 325–334. https://doi.org/
10.1109/TNSRE.2005.850423. Available from: http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid¼PMC2752646. http://www.ncbi.nlm.nih.gov/pubmed/
16200756.
Dong, S., Lu, K.-Q., Sun, J.Q., Rudolph, K., 2006. Smart rehabilitation devices: part II—
adaptive motion control. J. Intell. Mater. Syst. Struct. 1045-389X17 (7), 555–561.
https://doi.org/10.1177/1045389X06059076. Available from: http://www.pubmedc
entral.nih.gov/articlerender.fcgi?artid¼2424262&tool¼pmcentrez&rendertype¼abstract.
Dremstrup, K., Niazi, I.K., Jochumsen, M., Jiang, N., Mrachacz-Kersting, N., Farina, D.,
2014. Rehabilitation using a brain computer interface based on movement related
cortical potentials—a review. In: Roa Romero, L.M. (Ed.), XIII Mediterranean Con-
ference on Medical and Biological Engineering and Computing 2013. Springer Interna-
tional Publishing, Cham, pp. 1659–1662.
Duc, D.M., Kazuhiko, T., Takanori, M., 2008. EMG-moment model of human arm for
rehabilitation robot system. In: 2008 10th International Conference on Control, Auto-
mation, Robotics and Vision. IEEE, pp. 190–195. Available from: http://ieeexplore.
ieee.org/document/4795515/.
Elbagoury, B.M., Vladareanu, L., 2016. A hybrid real-time EMG intelligent rehabilitation
robot motions control based on Kalman filter, support vector machines and particle
swarm optimization. In: 2016 10th International Conference on Software, Knowledge,
Information Management & Applications (SKIMA). IEEE, pp. 439–444. Available from:
http://ieeexplore.ieee.org/document/7916262/.
Erol, D., Sarkar, N., 2007. Intelligent control for robotic rehabilitation after stroke. J. Intell.
Robot. Syst. 0921-029650 (4), 341–360. https://doi.org/10.1007/s10846-007-9169-2.
Available from: http://link.springer.com/10.1007/s10846-007-9169-2.
Fazekas, G., Horvath, M., Toth, A., 2006. A novel robot training system designed to sup-
plement upper limb physiotherapy of patients with spastic hemiparesis. Int. J. Rehabil.
Res. 29 (29) Available from: https://insights.ovid.com/pubmed?pmid¼16900048.
Flash, T., Hogan, N., 1985. Thecoordinationofarmmovements:anexperimentallyconfirmed
mathematicalmodel. J.Neurosci. 0270-64745(7),1688–1703. Availablefrom:https://doi.
org/4020415. http://www.ncbi.nlm.nih.gov/pubmed/4020415. http://www.jneurosci.
org/cgi/content/abstract/5/7/1688.
Fok, S., Schwartz, R., Wronkiewicz, M., Holmes, C., Zhang, J., Somers, T., Bundy, D.,
Leuthardt, E., 2011. An EEG-based brain computer interface for rehabilitation and res-
toration of hand control following stroke using ipsilateral cortical physiology. In: 2011