Page 346 - Handbook of Biomechatronics
P. 346
Upper Extremity Rehabilitation Robots: A Survey 339
Brackenridge, J., Bradnam, L.V., Lennon, S., Costi, J.J., Hobbs, D.A., 2016. A review of reha-
bilitation devices to promote upper limb function following stroke. Neurosci. Biomed.
Eng. 221338524 (1), 25–42. https://doi.org/10.2174/2213385204666160303220102.
Available from: http://www.eurekaselect.com/openurl/content.php?genre¼article&
issn¼2213-3852&volume¼4&issue¼1&spage¼25http://www.ingentaconnect.com/
content/ben/nbe/2016/00000004/00000001/art00006.
Brauchle, D., Vukeli c, M., Bauer, R., Gharabaghi, A., 2015. Brain state-dependent robotic
reaching movement with a multi-joint arm exoskeleton: combining brain-machine inter-
facing and robotic rehabilitation. Front. Hum. Neurosci. 1662-51619, 564. https://doi.
org/10.3389/fnhum.2015.00564. Available from: http://journal.frontiersin.org/Article/
10.3389/fnhum.2015.00564/abstracthttp://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid¼PMC4607784http://www.ncbi.nlm.nih.gov/pubmed/26528168.
Brewer, B.R., Klatzky, R., Matsuoka, Y., 2006. Initial therapeutic results of visual feedback
manipulation in robotic rehabilitation. In: 2006 International Workshop on Virtual
RehabilitationIEEE, pp. 160–166. Available from: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber¼1707546http://ieeexplore.ieee.org/document/1707546/.
Brewer, B.R., McDowell, S.K., Worthen-Chaudhari, L.C., 2007. Poststroke upper extrem-
ity rehabilitation: a review of robotic systems and clinical results. Top. Stroke Rehabil.
1074-935714 (6), 22–44. https://doi.org/10.1310/tsr1406-22. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/18174114.
Brewer, B.R., Klatzky, R., Matsuoka, Y., 2008. Visual feedback distortion in a robotic envi-
ronment for hand rehabilitation. Brain Res. Bull. 0361923075 (6), 804–813. https://doi.
org/10.1016/j.brainresbull.2008.01.006. Available from: http://linkinghub.elsevier.com/
retrieve/pii/S0361923008000099. http://www.ncbi.nlm.nih.gov/pubmed/18394527.
Brochard, S., Robertson, J., M ed ee, B., R emy-N eris, O., 2010. What’s new in new technol-
ogies for upper extremity rehabilitation? Curr. Opin. Neurol. 1350-754023, 683–687.
https://doi.org/10.1097/WCO.0b013e32833f61ce.
Broeren, J., Rydmark, M., Sunnerhagen, K.S., 2004. Virtual reality and haptics as a training
device for movement rehabilitation after stroke: a single-case study. Arch. Phys. Med.
Rehabil. 0003999385, 1247–1250. https://doi.org/10.1016/j.apmr.2003.09.020.
Broeren, J., Dixon, M., Sunnerhagen, K.S., Rydmark, M., 2006. Rehabilitation after
stroke using virtual reality, haptics (force feedback) and telemedicine. Stud. Health
Technol. Inform. 0926-9630124, 51–56. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/17108503.
Brokaw, E.B., Murray, T., Nef, T., Lum, P.S., 2011. Retraining of interjoint arm coordi-
nation after stroke using robot-assisted time-independent functional training. J. Rehabil.
Res. Dev. 1938-135248 (4), 299–316. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/21674385.
Burdea, G.C., 2003. Virtual rehabilitation-benefits and challenges. Methods Inf. Med.
0026-127042 (5), 519–523. https://doi.org/10.1267/METH03050519. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/14654886.
Burgar, C.G., Lum, P.S., Shor, P.C., Machiel Van der Loos, H.F., 2000. Development
of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience.
J. Rehabil. Res. Dev. 37 (6), 663–673. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/11321002.
Cano-de-la Cuerda, R., Molero-Sa ´nchez, A., Carratala ´-Tejada, M., Alguacil-Diego, I.M.,
Molina-Rueda, F., Miangolarra-Page, J.C., Torricelli, D., 2015. Theories and control
models and motor learning: clinical applications in neurorehabilitation. Neurologı ´a
(English Edition) 2173580830 (1), 32–41. https://doi.org/10.1016/j.nrleng.2011.12.012.
Available from: http://linkinghub.elsevier.com/retrieve/pii/S2173580814001424. http://
www.sciencedirect.com/science/article/pii/S2173580814001424.