Page 347 - Handbook of Biomechatronics
P. 347
340 Borna Ghannadi et al.
Carignan, C., Tang, J., Roderick, S., 2009. Development of an exoskeleton haptic interface
for virtual task training. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 3697–3702. Available from: http://
ieeexplore.ieee.org/document/5354834/.
Carmeli, E., Peleg, S., Bartur, G., Elbo, E., Vatine, J.-J., 2011. HandTutor enhanced hand
rehabilitation after stroke—a pilot study. Physiother. Res. Int. 16 (4), 191–200. https://
doi.org/10.1002/pri.485. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
20740477.
Cesqui, B., Tropea, P., Micera, S., Krebs, H., 2013. EMG-based pattern recognition
approach in post stroke robot-aided rehabilitation: a feasibility study. J. Neuroeng.
Rehabil. 1743-000310 (1), 75. https://doi.org/10.1186/1743-0003-10-75. Available
from: http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-10-75.
Choi, C., Kim, J., 2007. A real-time EMG-based assistive computer interface for the upper
limb disabled. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics
(ICORR). IEEE, pp. 459–462. Available from: http://ieeexplore.ieee.org/document/
4428465/.
Coderre, A.M., Amr Abou Zeid, A.A., Dukelow, S.P., Demmer, M.J., Moore, K.D.,
Demers, M.J., Bretzke, H., Herter, T.M., Glasgow, J.I., Norman, K.E., Bagg, S.D.,
Scott, S.H., 2010. Assessment of upper-limb sensorimotor function of subacute stroke
patients using visually guided reaching. Neurorehabil. Neural Repair 24 (6),
528–541. https://doi.org/10.1177/1545968309356091. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/20233965.
Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M.C., Dario, P.,
Minuco, G., 2005. Robotic techniques for upper limb evaluation and rehabilitation of
stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 1534-432013 (3), 311–324.
https://doi.org/10.1109/TNSRE.2005.848352. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/16200755.
Crocher, V., Sahbani, A., Robertson, J., Roby-Brami, A., Morel, G., 2012. Constraining
upper limb synergies of hemiparetic patients using a robotic exoskeleton in the per-
spective of neuro-rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 1534-
432020 (3), 247–257. https://doi.org/10.1109/TNSRE.2012.2190522.Available
from: http://ieeexplore.ieee.org/document/6177268/. http://www.ncbi.nlm.nih.
gov/pubmed/22481836.
Crow, J.L., Lincoln, N.B., Nouri, F.M., Weerdt, W.D., 1989. The effectiveness of
EMG biofeedback in the treatment of arm function after stroke. Int. Disabil. Stud.
0259-914711 (4), 155–160. https://doi.org/10.3109/03790798909166667. Available
from: http://www.tandfonline.com/doi/full/10.3109/03790798909166667.
Culmer, P.R., Jackson, A.E., Makower, S., Richardson, R., Cozens, J.A., Levesley, M.C.,
Bhakta, B.B., 2010. A control strategy for upper limb robotic rehabilitation with a dual
robot system. IEEE/ASME Trans. Mechatron. 1083-443515 (4), 575–585. https://doi.
org/10.1109/TMECH.2009.2030796. Available from: http://ieeexplore.ieee.org/
document/5263023/.
Cvjetkovic, D.D., Bijeljac, S., Palija, S., Talic, G., Radulovic, T.N., Kosanovic, M.G.,
Manojlovic, S., 2015. Isokinetic testing in evaluation rehabilitation outcome after
ACL reconstruction. Med. Arch. (Sarajevo, Bosnia and Herzegovina) 69 (1), 21–23.
https://doi.org/10.5455/medarh.2015.69.21-23. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/25870471.
Daly, J.J., Huggins, J.E., 2015. Brain-computer interface: current and emerging rehabilita-
tion applications. Arch. Phys. Med. Rehabil. 0003999396 (3), S1–S7. https://doi.org/
10.1016/j.apmr.2015.01.007. Available from: http://linkinghub.elsevier.com/retrieve/
pii/S0003999315000209. http://www.ncbi.nlm.nih.gov/pubmed/25721542.