Page 396 - Handbook of Biomechatronics
P. 396

390                                                  Lilach Bareket et al.


          interface. As we await the arrival of genetic and stem cell therapies where
          individual neural elements may become independent of their neighbors,
          neuromodulation remains a most powerful tool that has yet to be harnessed
          to its fullest potential. The development of new biomaterials is reducing the
          integration gap between biology and technology thus providing better con-
          nections between the electrodes and the excitable tissue. While most
          research efforts are being directed toward reducing the size of the electrodes,
          there is a key factor that impacts significantly the quality of the visual per-
          cepts elicited by bionic technologies: the ability to encode neural activity
          elicited by electrical stimulation as occurs in normal vision. The combina-
          tion of more effective electrode-tissue interfaces with new neuromodulation
          techniques will soon allow for a more selective activation of the neural tissue
          with controlled timing of the elicited neural responses, taking vision pros-
          theses further toward the goal of mimicking the lost sensory functionalities.


          REFERENCES
          Ahnood, A., Meffin, H., Garrett, D.J., Fox, K., Ganesan, K., Stacey, A., Apollo, N.V.,
             Wong, Y.T., Lichter, S.G., Kentler, W., 2016. Diamond devices for high acuity pros-
             thetic vision. Adv. Biosyst. 2 (3), 1–10.
          Ahuja, A.K., Yeoh, J., Dorn,J.D.,Caspi, A., Wuyyuru, V., Mcmahon, M.J., Humayun, M.S.,
             Greenberg, R.J., Dacruz, L., Argus II, S.G., 2013. Factors affecting perceptual threshold
             in Argus II retinal prosthesis subjects. Transl. Vision Sci. Technol. 2, 1.
          Andrews, T.J., Halpern, S.D., Purves, D., 1997. Correlated size variations in human visual
             cortex, lateral geniculate nucleus, and optic tract. J. Neurosci. 17, 2859–2868.
          Antognazza, M.R., Ghezzi, D., Maschio, M.D., Lanzarini, E., Benfenati, F., Lanzani, G.,
             2012. A hybrid bio-organic interface for neuronal photo-activation. arXiv preprint
             arXiv:1202.1189.
          Antognazza, M.R., Martino, N., Ghezzi, D., Feyen, P., Colombo, E., Endeman, D.,
             Benfenati, F., Lanzani, G., 2015. Shedding light on living cells. Adv. Mater.
             27, 7662–7669.
          Antognazza, M.R., Di Paolo, M., Ghezzi, D., Mete, M., Di Marco, S., Maya-
             Vetencourt, J.F., Maccarone, R., Desii, A., Di Fonzo, F., Bramini, M., 2016. Charac-
             terization of a polymer-based, fully organic prosthesis for implantation into the subretinal
             space of the rat. Adv. Healthcare Mater. 5, 2271–2282.
          Ayton, L.N., Guymer, R.H., Luu, C.D., 2013. Choroidal thickness profiles in retinitis
             pigmentosa. Clin. Exp. Ophthalmol. 41, 396–403.
          Ayton, L.N., Blamey, P.J., Guymer, R.H., Luu, C.D., Nayagam, D.A., Sinclair, N.C.,
             Shivdasani, M.N., Yeoh, J., Mccombe, M.F., Briggs, R.J., 2014. First-in-human trial
             of a novel suprachoroidal retinal prosthesis. PLoS ONE. 9, e115239.
          Baden, T., Berens, P., Franke, K., Roso ´n, M.R., Bethge, M., Euler, T., 2016. The functional
             diversity of retinal ganglion cells in the mouse. Nature 529, 345–350.
          Bak, M., Girvin, J., Hambrecht, F., Kufta, C., Loeb, G., Schmidt, E., 1990. Visual sensations
             produced by intracortical microstimulation of the human occipital cortex. Med. Biol.
             Eng. Comput. 28, 257–259.
          Bareket, L., Waiskopf, N., Rand, D., Lubin, G., David-Pur, M., Ben-Dov, J., Roy, S.,
             Eleftheriou, C., Sernagor, E., Cheshnovsky, O., 2014. Semiconductor nanorod–carbon
   391   392   393   394   395   396   397   398   399   400   401