Page 399 - Handbook of Biomechatronics
P. 399

Current Advances in the Design of Retinal and Cortical Visual Prostheses  393


              Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E., 1990. Human photoreceptor
                 topography. J. Comp. Neurol. 292, 497–523.
              da Cruz, L., Dorn, J.D., Humayun, M.S., Dagnelie, G., Handa, J., Barale, P.-O., Sahel, J.-A.,
                 Stanga, P.E., Hafezi, F., Safran, A.B., 2016. Five-year safety and performance results
                 from the Argus II retinal prosthesis system clinical trial. Ophthalmology 123, 2248–2254.
              da Cruz, L., Coley, B.F., Dorn, J., Merlini, F., Filley, E., Christopher, P., Chen, F.K.,
                 Wuyyuru, V., Sahel, J., Stanga, P., Humayun, M., Greenberg, R.J., Dagnelie, G.,
                 Argus II, S.G., 2013. The Argus II epiretinal prosthesis system allows letter and word
                 reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol.
                 97, 632–636.
              Dagnelie, G., 2008. Psychophysical evaluation for visual prosthesis. Annu. Rev. Biomed.
                 Eng. 10, 339–368.
              Dagnelie, G., Barnett, D., Humayun, M.S., Thompson, R.W., 2006. Paragraph text reading
                 using a pixelized prosthetic vision simulator: parameter dependence and task learning
                 in free-viewing conditions. Investig. Ophthalmol. Vis. Sci. 47, 1241–1250.
              David-Pur, M., Bareket-Keren, L., Beit-Yaakov, G., Raz-Prag, D., Hanein, Y., 2014. All-
                 carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation.
                 Biomed. Microdevices 16, 43–53.
              Davis, T., Parker, R., House, P., Bagley, E., Wendelken, S., Normann, R., Greger, B., 2012.
                 Spatial and temporal characteristics of V1 microstimulation during chronic implantation
                 of a microelectrode array in a behaving macaque. J. Neural Eng.. 9065003.
              de Balthasar, C., Patel, S., Roy, A., Freda, R., Greenwald, S., Horsager, A.,
                 Mahadevappa, M., Yanai, D., Mcmahon, M.J., Humayun, M.S., Greenberg, R.J.,
                 Weiland, J.D., Fine, I., 2008. Factors affecting perceptual thresholds in epiretinal
                 prostheses. Investig. Ophthalmol. Vis. Sci. 49, 2303–2314.
              Delbeke, J., Oozeer, M., Veraart, C., 2003. Position, size and luminosity of phosphenes
                 generated by direct optic nerve stimulation. Vis. Res. 43, 1091–1102.
              Dobelle, W.H., 2000. Artificial vision for the blind by connecting a television camera to the
                 visual cortex. ASAIO J. 46, 3–9.
              Dobelle, W., Mladejovsky, M., 1974. Phosphenes produced by electrical stimulation of
                 human occipital cortex, and their application to the development of a prosthesis for
                 the blind. J. Physiol. 243, 553.
              Dobelle, W.H., Mladejovsky, M., Girvin, J., 1974. Artificial vision for the blind: electrical
                 stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444.
              Dokos, S., Suaning, G.J., Lovell, N.H., 2005. A bidomain model of epiretinal stimulation.
                 IEEE Trans. Neural Syst. Rehabil. Eng 13, 137–146.
              Donaldson, P., 1973. In: Experimental visual prosthesis. Proceedings of the Institution of
                 Electrical Engineers. IET, pp. 281–298.
              Dorn, J.D., Ahuja, A.K., Caspi, A., da Cruz, L., Dagnelie, G., Sahel, J.A., Greenberg, R.J.,
                 Mcmahon, M.J., Argus II, S.G., 2013. The detection of motion by blind subjects with
                 the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 131, 183–189.
              Duret, F., Brel en, M.E., Lambert, V., G erard, B., Delbeke, J., Veraart, C., 2006. Object
                 localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor.
                 Neurol. Neurosci. 24, 31–40.
              Dyer, M.A., Cepko, C.L., 2000. Control of M€uller glial cell proliferation and activation
                 following retinal injury. Nat. Neurosci. 3, 873–880.
              Eleftheriou, C.G., Zimmermann, J.B., Kjeldsen, H.D., David-Pur, M., Hanein, Y.,
                 Sernagor, E., 2017. Carbon nanotube electrodes for retinal implants: a study of structural
                 and functional integration over time. Biomaterials 112, 108–121.
              Fang, X., Sakaguchi, H., Fujikado, T., Osanai, M., Kanda, H., Ikuno, Y., Kamei, M.,
                 Ohji, M., Gan, D., Choi, J., 2005. Direct stimulation of optic nerve by electrodes
   394   395   396   397   398   399   400   401   402   403   404