Page 399 - Handbook of Biomechatronics
P. 399
Current Advances in the Design of Retinal and Cortical Visual Prostheses 393
Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E., 1990. Human photoreceptor
topography. J. Comp. Neurol. 292, 497–523.
da Cruz, L., Dorn, J.D., Humayun, M.S., Dagnelie, G., Handa, J., Barale, P.-O., Sahel, J.-A.,
Stanga, P.E., Hafezi, F., Safran, A.B., 2016. Five-year safety and performance results
from the Argus II retinal prosthesis system clinical trial. Ophthalmology 123, 2248–2254.
da Cruz, L., Coley, B.F., Dorn, J., Merlini, F., Filley, E., Christopher, P., Chen, F.K.,
Wuyyuru, V., Sahel, J., Stanga, P., Humayun, M., Greenberg, R.J., Dagnelie, G.,
Argus II, S.G., 2013. The Argus II epiretinal prosthesis system allows letter and word
reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol.
97, 632–636.
Dagnelie, G., 2008. Psychophysical evaluation for visual prosthesis. Annu. Rev. Biomed.
Eng. 10, 339–368.
Dagnelie, G., Barnett, D., Humayun, M.S., Thompson, R.W., 2006. Paragraph text reading
using a pixelized prosthetic vision simulator: parameter dependence and task learning
in free-viewing conditions. Investig. Ophthalmol. Vis. Sci. 47, 1241–1250.
David-Pur, M., Bareket-Keren, L., Beit-Yaakov, G., Raz-Prag, D., Hanein, Y., 2014. All-
carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation.
Biomed. Microdevices 16, 43–53.
Davis, T., Parker, R., House, P., Bagley, E., Wendelken, S., Normann, R., Greger, B., 2012.
Spatial and temporal characteristics of V1 microstimulation during chronic implantation
of a microelectrode array in a behaving macaque. J. Neural Eng.. 9065003.
de Balthasar, C., Patel, S., Roy, A., Freda, R., Greenwald, S., Horsager, A.,
Mahadevappa, M., Yanai, D., Mcmahon, M.J., Humayun, M.S., Greenberg, R.J.,
Weiland, J.D., Fine, I., 2008. Factors affecting perceptual thresholds in epiretinal
prostheses. Investig. Ophthalmol. Vis. Sci. 49, 2303–2314.
Delbeke, J., Oozeer, M., Veraart, C., 2003. Position, size and luminosity of phosphenes
generated by direct optic nerve stimulation. Vis. Res. 43, 1091–1102.
Dobelle, W.H., 2000. Artificial vision for the blind by connecting a television camera to the
visual cortex. ASAIO J. 46, 3–9.
Dobelle, W., Mladejovsky, M., 1974. Phosphenes produced by electrical stimulation of
human occipital cortex, and their application to the development of a prosthesis for
the blind. J. Physiol. 243, 553.
Dobelle, W.H., Mladejovsky, M., Girvin, J., 1974. Artificial vision for the blind: electrical
stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444.
Dokos, S., Suaning, G.J., Lovell, N.H., 2005. A bidomain model of epiretinal stimulation.
IEEE Trans. Neural Syst. Rehabil. Eng 13, 137–146.
Donaldson, P., 1973. In: Experimental visual prosthesis. Proceedings of the Institution of
Electrical Engineers. IET, pp. 281–298.
Dorn, J.D., Ahuja, A.K., Caspi, A., da Cruz, L., Dagnelie, G., Sahel, J.A., Greenberg, R.J.,
Mcmahon, M.J., Argus II, S.G., 2013. The detection of motion by blind subjects with
the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 131, 183–189.
Duret, F., Brel en, M.E., Lambert, V., G erard, B., Delbeke, J., Veraart, C., 2006. Object
localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor.
Neurol. Neurosci. 24, 31–40.
Dyer, M.A., Cepko, C.L., 2000. Control of M€uller glial cell proliferation and activation
following retinal injury. Nat. Neurosci. 3, 873–880.
Eleftheriou, C.G., Zimmermann, J.B., Kjeldsen, H.D., David-Pur, M., Hanein, Y.,
Sernagor, E., 2017. Carbon nanotube electrodes for retinal implants: a study of structural
and functional integration over time. Biomaterials 112, 108–121.
Fang, X., Sakaguchi, H., Fujikado, T., Osanai, M., Kanda, H., Ikuno, Y., Kamei, M.,
Ohji, M., Gan, D., Choi, J., 2005. Direct stimulation of optic nerve by electrodes