Page 402 - Handbook of Biomechatronics
P. 402
396 Lilach Bareket et al.
Kanda, H., Sawai, H., Morimoto, T., Fujikado, T., Tano, Y., Fukuda, Y., 2003.
Suprachoroidal-transretinal stimulation (STS) can elicit localized evoked responses from
the superior colliculus in normal and RCS rats. Investig. Ophthalmol. Vis. Sci. 44, 5053.
Kanda, H., Morimoto, T., Fujikado, T., Tano, Y., Fukuda, Y., Sawai, H., 2004. Electro-
physiological studies of the feasibility of suprachoroidal-transretinal stimulation for
artificial vision in normal and RCS rats. Investig. Ophthalmol. Vis. Sci. 45, 560–566.
Kelly, S.K., Shire, D.B., Chen, J., Doyle, P., Gingerich, M.D., Cogan, S.F., Drohan, W.A.,
Behan, S., Theogarajan, L., Wyatt, J.L., Rizzo, J.F., 2011. A hermetic wireless subretinal
neurostimulator for vision prostheses. IEEE Trans. Biomed. Eng. 58, 3197–3205.
Kelly, S.K., Shire, D.B., Chen, J., Gingerich, M.D., Cogan, S.F., Drohan, W.A.,
Ellersick, W., Krishnan, A., Behan, S., Wyatt, J.L., Rizzo, J.F., 2013. In: Developments
on the Boston 256-channel retinal implant.Electronic Proceedings of the 2013 IEEE
International Conference on Multimedia and Expo Workshops.
Keser€u, M., Post, N., Hornig, R., Zeitz, O., Richard, G., 2009. Long term tolerability of the
first wireless implant for electrical epiretinal stimulation. Investig. Ophthalmol. Vis. Sci.
50, 4226.
Keser€u, M., Feucht, M., Bornfeld, N., Laube, T., Walter, P., R€ossler, G., Velikay-Parel, M.,
Hornig, R., Richard, G., 2012. Acute electrical stimulation of the human retina with an
epiretinal electrode array. Acta Ophthalmol. 90, e1–e8.
Khraiche, M.L., Lo, Y., Wang, D., Cauwenberghs, G., Freeman, W., Silva, G.A., 2011.
In: Ultra-high photosensitivity silicon nanophotonics for retinal prosthesis: electrical
characteristics.2011 Annual International Conference of the IEEE Engineering in Med-
icine and Biology Society (EMBC), pp. 2933–2936.
Khraiche, M.L., El Emam, S., Akinin, A., Cauwenberghs, G., Freeman, W., Silva, G.A.,
2013. In: Visual evoked potential characterization of rabbit animal model for retinal pros-
thesis research.2013 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 3539–3542.
Killian, N.J., Vurro, M., Keith, S.B., Kyada, M.J., Pezaris, J.S., 2016. Perceptual learning in a
non-human primate model of artificial vision. Sci. Rep. 6, 1–16.
Klauke, S., Goertz, M., Rein, S., Hoehl, D., Thomas, U., Eckhorn, R., Bremmer, F.,
Wachtler, T., 2011. Stimulation with a wireless intraocular epiretinal implant elicits
visual percepts in blind humans. Investig. Ophthalmol. Vis. Sci. 52, 449–455.
Klomp, G., Womack, M., Dobelle, W., 1977. Fabrication of large arrays of cortical
electrodes for use in man. J. Biomed. Mater. Res. A 11, 347–364.
Koch, C., 2013. Cracking the retinal code. Sci. Am. Mind 23, 20–21.
Krause, F., 1924. Die Sehbahn in chirurgischer Beziehung und die faradische Reizung des
Sehzentrums. J. Mol. Med. 3, 1260–1265.
Lee, S.W., Seo, J.-M., Ha, S., Kim, E.T., Chung, H., Kim, S.J., 2009. Development of
microelectrode arrays for artificial retinal implants using liquid crystal polymers. Investig.
Ophthalmol. Vis. Sci. 50, 5859–5866.
Lee, S.W., Min, K.S., Jeong, J., Kim, J., Kim, S.J., 2011. Monolithic encapsulation of
implantable neuroprosthetic devices using liquid crystal polymers. IEEE Trans. Biomed.
Eng. 58, 2255–2263.
Lee, S.W., Fallegger, F., Casse, B.D., Fried, S.I., 2016. Implantable microcoils for intra-
cortical magnetic stimulation. Sci. Adv. 2, e1600889.
Lehman, S.S., 2012. Cortical visual impairment in children: identification, evaluation and
diagnosis. Curr. Opin. Ophthalmol. 23, 384–387.
Lennie, P., D’Zmura, M., 1987. Mechanisms of color vision. Crit. Rev. Neurobiol.
3, 333–400.
LeRoy, C., 1755. Ou ` l’on rend compte de quelques tentatives que l’on a faites pour gu erir
e
e
plusieurs maladies par l’ lectricit e. Hist. Acad. R. Sci. (Paris) M moire Math. Phys.
60, 87–95.