Page 407 - Handbook of Biomechatronics
P. 407
Current Advances in the Design of Retinal and Cortical Visual Prostheses 401
Srivastava, N., Troyk, P., 2006b. In: Some solutions to technical hurdles for developing a
practical intracortical visual prosthesis device.28th Annual International Conference of
theIEEE Engineering inMedicine andBiology Society, 2006.EMBS’06,pp.2936–2939.
Stensaas, S.S., Eddington, D.K., Dobelle, W.H., 1974. The topography and variability of the
primary visual cortex in man. J. Neurosurg. 40, 747–755.
Stevens, G.A., White, R.A., Flaxman, S.R., Price, H., Jonas, J.B., Keeffe, J., Leasher, J.,
Naidoo, K., Pesudovs, K., Resnikoff, S., 2013. Global prevalence of vision impairment
and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120,
2377–2384.
Stingl, K., Bach, M., Bartz-Schmidt, K.U., Braun, A., Bruckmann, A., Gekeler, F.,
Greppmaier, U., H€ortd€orfer, G., Kusnyerik, A., Peters, T., Wilhelm, B., Wilke, R.,
Zrenner, E., 2013a. Safety and efficacy of subretinal visual implants in humans: method-
ological aspects. Clin. Exp. Optom. 96, 4–13.
Stingl, K., Bartz-Schmidt, K.U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F.,
Greppmaier, U., Hipp, S., Hortdorfer, G., Kernstock, C., Koitschev, A.,
Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K.T., Peters, T., Wilhelm, B.,
Zrenner, E., 2013b. Artificial vision with wirelessly powered subretinal electronic
implant alpha-IMS. Proc. R. Soc. B Biol. Sci. 280, 1–8.
Stingl, K., Gekeler, F., Bartz-Schmidt, K.U., K€ogel, A., Zrenner, E., Gelisken, F., 2013c.
Fluorescein angiographic findings in eyes of patients with a subretinal electronic implant.
Curr. Eye Res. 38, 588–596.
Stingl, K., Bartz-Schmidt, K.U., Besch, D., Chee, C.K., Cottriall, C.L., Gekeler, F.,
Groppe, M., Jackson, T.L., Maclaren, R.E., Koitschev, A., Kusnyerik, A.,
Neffendorf, J., Nemeth, J., Naeem, M.A.N., Peters, T., Ramsden, J.D., Sachs, H.,
Simpson, A., Singh, M.S., Wilhelm, B., Wong, D., Zrenner, E., 2015. Subretinal visual
implant alpha IMS—clinical trial interim report. Vis. Res. 111, 149–160.
Stone, J.L., Barlow, W.E., Humayun, M.S., Dejuan, E., Milam, A.H., 1992. Morphometric
analysis of macular photoreceprors and ganglion-cells in retinas with retinis-pigmentosa.
Arch. Ophthalmol. 110, 1634–1639.
Suaning, G.J., Hallum, L.E., Preston, P.J., Lovell, N.H., 2004. In: Efficient multiplexing
method for addressing large numbers of electrodes in a visual neuroprosthesis. Proceed-
ings of the 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, pp. 4174–4177.
Suaning, G.J., Schuettler, M., Ordonez, J.S., Lovell, N.H., 2007. In: Fabrication of multi-
layer, high-density micro-electrode arrays for neural stimulation and bio-signal record-
ing. Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineer-
ing. IEEE, pp. 5–8.
Suaning, G.J., Lovell, N.H., Lehmann, T., 2014. In: Neuromodulation of the retina from
the suprachoroidal space: the Phoenix 99 implant. Biomedical Circuits and Systems
Conference (BioCAS). IEEE, pp. 256–259.
Sun, J., Lu, Y., Cao, P., Li, X., Cai, C., Chai, X., Ren, Q., Li, L., 2011. Spatiotemporal
properties of multipeaked electrically evoked potentials elicited by penetrative optic
nerve stimulation in rabbits. Investig. Ophthalmol. Vis. Sci. 52, 146–154.
Sun, J., Chen, Y., Chai, X., Ren, Q., Li, L., 2013. Penetrating electrode stimulation of the
rabbit optic nerve: parameters and effects on evoked cortical potentials. Graefes Arch.
Clin. Exp. Ophthalmol. 251, 2545–2554.
Tassicker, G., 1956. Preliminary report on a retinal stimulator. Br. J. Physiol. Optics
13, 102–105.
Tawakol, O., Bredeson, S.D., Troyk, P.R., 2016. In: Preparation of a neural electrode
implantation device for in-vivo surgical use.2016 IEEE 38th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pp. 4507–4510.