Page 404 - Handbook of Biomechatronics
P. 404

398                                                  Lilach Bareket et al.


          Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P.,
             Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., 2017. A fully organic retinal pros-
             thesis restores vision in a rat model of degenerative blindness. Nat. Mater. 681–689.
          Mccreery, D.B., Yuen, T.G., Agnew, W.F., Bullara, L.A., 1994. Stimulus parameters affect-
             ing tissue injury during microstimulation in the cochlear nucleus of the cat. Hear. Res.
             77, 105–115.
          Mccreery, D., Pikov, V., Troyk, P.R., 2010. Neuronal loss due to prolonged controlled-
             current stimulation with chronically implanted microelectrodes in the cat cerebral
             cortex. J. Neural Eng. 7, 036005.
          Menzel-Severing, J., Laube, T., Brockmann, C., Bornfeld, N., Mokwa, W., Mazinani, B.,
             Walter, P., Roessler, G., 2012. Implantation and explantation of an active epiretinal
             visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial.
             Eye 26, 502–509.
          Merrill, D.R., Bikson, M., Jefferys, J.G.R., 2005. Electrical stimulation of excitable tissue:
             design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198.
          Mohammadi, H.M., Ghafar-Zadeh, E., Sawan, M., 2012. An image processing approach for
             blind mobility facilitated through visual intracortical stimulation. Artif. Organs
             36, 616–628.
          Molokanova, E., Bartel, J., Zhao, W., Naasani, I., Ignatius, M., Treadway, J.,
             Savtchenko, A., 2008. Quantum dots move beyond fluorescence imaging the unique
             properties of quantum dots allow them to be optimized for voltage sensing and for
             light-controlled electrical activation of cells. Biophoton. Int. 15, 26.
          Morimoto, K., Fahnestock, M., Racine, R.J., 2004. Kindling and status epilepticus models of
             epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60.
          Mullen, K.T., Dumoulin, S.O., Hess, R.F., 2008. Color responses of the human lateral
             geniculate nucleus: selective amplification of S-cone signals between the lateral genicu-
             late nucleno and primary visual cortex measured with high-field fMRI. Eur. J. Neurosci.
             28, 1911–1923.
          Nakauchi, K., Fujikado, T., Kanda, H., Morimoto, T., Choi, J.S., Ikuno, Y., Sakaguchi, H.,
             Kamei, M., Ohji, M., Yagi, T., Nishimura, S., Sawai, H., fukuda, Y., Tano, Y., 2005.
             Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit
             eyes. Graefes Arch. Clin. Exp. Ophthalmol. 243, 169–174.
          Nishida, K., Sakaguchi, H., Kamei, M., Cecilia-Gonzalez, C., Terasawa, Y., Velez-
             Montoya, R., Fujikado, T., Sanchez-Fontan, R., Ozawa, M., Quiroz-Mercado, H.,
             2015. Visual sensation by electrical stimulation using a new direct optic nerve electrode
             device. Brain Stimul 8, 678.
          Normann, R.A., Maynard, E.M., rousche, P.J., Warren, D.J., 1999. A neural interface for a
             cortical vision prosthesis. Vis. Res. 39, 2577–2587.
          Opie, N.L., Burkitt, A.N., Meffin, H., Grayden, D.B., 2012. Heating of the eye by a retinal
             prosthesis: modeling, cadaver and in vivo study. IEEE Trans. Biomed. Eng. 59, 339–345.
          Palanker, D., Vankov, A., Huie, P., Baccus, S., 2005. Design of a high-resolution optoelec-
             tronic retinal prosthesis. J. Neural Eng. 2, 16.
          Panetsos, F., Sanchez-Jimenez, A., Diaz-de Cerio, E.R., Diaz-Guemes, I., Sanchez, F.M.,
             2011. Consistent phosphenes generated by electrical microstimulation of the visual
             thalamus. An experimental approach for thalamic visual neuroprostheses. Front.
             Neurosci. 5, 84.
          Pappas, T.C., Wickramanyake, W.S., Jan, E., Motamedi, M., Brodwick, M., Kotov, N.A.,
             2007. Nanoscale engineering of a cellular interface with semiconductor nanoparticle
             films for photoelectric stimulation of neurons. Nano Lett. 7, 513–519.
          Parver, L.M., Auker, C., Carpenter, D.O., 1980. Choroidal blood-flow as a heat dissipating
             mechanism in the macula. Am J. Ophthalmol. 89, 641–646.
          Peachey, N.S., Chow, A.Y., 1999. Subretinal implantation of semiconductor-based
             photodiodes: progress and challenges. J. Rehabil. Res. Dev. 36, 371–376.
   399   400   401   402   403   404   405   406   407   408   409