Page 404 - Handbook of Biomechatronics
P. 404
398 Lilach Bareket et al.
Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P.,
Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., 2017. A fully organic retinal pros-
thesis restores vision in a rat model of degenerative blindness. Nat. Mater. 681–689.
Mccreery, D.B., Yuen, T.G., Agnew, W.F., Bullara, L.A., 1994. Stimulus parameters affect-
ing tissue injury during microstimulation in the cochlear nucleus of the cat. Hear. Res.
77, 105–115.
Mccreery, D., Pikov, V., Troyk, P.R., 2010. Neuronal loss due to prolonged controlled-
current stimulation with chronically implanted microelectrodes in the cat cerebral
cortex. J. Neural Eng. 7, 036005.
Menzel-Severing, J., Laube, T., Brockmann, C., Bornfeld, N., Mokwa, W., Mazinani, B.,
Walter, P., Roessler, G., 2012. Implantation and explantation of an active epiretinal
visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial.
Eye 26, 502–509.
Merrill, D.R., Bikson, M., Jefferys, J.G.R., 2005. Electrical stimulation of excitable tissue:
design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198.
Mohammadi, H.M., Ghafar-Zadeh, E., Sawan, M., 2012. An image processing approach for
blind mobility facilitated through visual intracortical stimulation. Artif. Organs
36, 616–628.
Molokanova, E., Bartel, J., Zhao, W., Naasani, I., Ignatius, M., Treadway, J.,
Savtchenko, A., 2008. Quantum dots move beyond fluorescence imaging the unique
properties of quantum dots allow them to be optimized for voltage sensing and for
light-controlled electrical activation of cells. Biophoton. Int. 15, 26.
Morimoto, K., Fahnestock, M., Racine, R.J., 2004. Kindling and status epilepticus models of
epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60.
Mullen, K.T., Dumoulin, S.O., Hess, R.F., 2008. Color responses of the human lateral
geniculate nucleus: selective amplification of S-cone signals between the lateral genicu-
late nucleno and primary visual cortex measured with high-field fMRI. Eur. J. Neurosci.
28, 1911–1923.
Nakauchi, K., Fujikado, T., Kanda, H., Morimoto, T., Choi, J.S., Ikuno, Y., Sakaguchi, H.,
Kamei, M., Ohji, M., Yagi, T., Nishimura, S., Sawai, H., fukuda, Y., Tano, Y., 2005.
Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit
eyes. Graefes Arch. Clin. Exp. Ophthalmol. 243, 169–174.
Nishida, K., Sakaguchi, H., Kamei, M., Cecilia-Gonzalez, C., Terasawa, Y., Velez-
Montoya, R., Fujikado, T., Sanchez-Fontan, R., Ozawa, M., Quiroz-Mercado, H.,
2015. Visual sensation by electrical stimulation using a new direct optic nerve electrode
device. Brain Stimul 8, 678.
Normann, R.A., Maynard, E.M., rousche, P.J., Warren, D.J., 1999. A neural interface for a
cortical vision prosthesis. Vis. Res. 39, 2577–2587.
Opie, N.L., Burkitt, A.N., Meffin, H., Grayden, D.B., 2012. Heating of the eye by a retinal
prosthesis: modeling, cadaver and in vivo study. IEEE Trans. Biomed. Eng. 59, 339–345.
Palanker, D., Vankov, A., Huie, P., Baccus, S., 2005. Design of a high-resolution optoelec-
tronic retinal prosthesis. J. Neural Eng. 2, 16.
Panetsos, F., Sanchez-Jimenez, A., Diaz-de Cerio, E.R., Diaz-Guemes, I., Sanchez, F.M.,
2011. Consistent phosphenes generated by electrical microstimulation of the visual
thalamus. An experimental approach for thalamic visual neuroprostheses. Front.
Neurosci. 5, 84.
Pappas, T.C., Wickramanyake, W.S., Jan, E., Motamedi, M., Brodwick, M., Kotov, N.A.,
2007. Nanoscale engineering of a cellular interface with semiconductor nanoparticle
films for photoelectric stimulation of neurons. Nano Lett. 7, 513–519.
Parver, L.M., Auker, C., Carpenter, D.O., 1980. Choroidal blood-flow as a heat dissipating
mechanism in the macula. Am J. Ophthalmol. 89, 641–646.
Peachey, N.S., Chow, A.Y., 1999. Subretinal implantation of semiconductor-based
photodiodes: progress and challenges. J. Rehabil. Res. Dev. 36, 371–376.