Page 401 - Handbook of Biomechatronics
P. 401
Current Advances in the Design of Retinal and Cortical Visual Prostheses 395
Goddard, G.V., 1967. Development of epileptic seizures through brain stimulation at low
intensity. Nature 214, 1020–1021.
Gwon, T.M., Kim, J.H., Choi, G.J., Kim, S.J., 2016. Mechanical interlocking to improve
metal–polymer adhesion in polymer-based neural electrodes and its impact on device
reliability. J. Mater. Sci. 51, 6897–6912.
Ha, S., Khraiche, M.L., Akinin, A., Jing, Y., Damle, S., Kuang, Y., Bauchner, S., Lo, Y.-H.,
Freeman, W.R., Silva, G.A., 2016. Towards high-resolution retinal prostheses with
direct optical addressing and inductive telemetry. J. Neural Eng.. 13056008.
Habib, A.G., Cameron, M.A., Suaning, G.J., Lovell, N.H., Morley, J.W., 2013. Spatially
restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar
electrode return configuration. J. Neural Eng.. 10036013.
Hadjinicolaou, A.E., Leung, R.T., Garrett, D.J., Ganesan, K., Fox, K., Nayagam, D.A.,
Shivdasani, M.N., Meffin, H., Ibbotson, M.R., Prawer, S., 2012. Electrical stimulation
of retinal ganglion cells with diamond and the development of an all diamond retinal
prosthesis. Biomaterials 33, 5812–5820.
Hartong, D.T., Berson, E.L., Dryja, T.P., 2006. Retinitis pigmentosa. Lancet
368, 1795–1809.
Hecht, S., Shlaer, S., Pirenne, M.H., 1942. Energy, quanta, and vision. J. Gen. Physiol.
25, 819–840.
Ho, A.C., Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Handa, J., Barale, P.-O.,
Sahel, J.-A., Stanga, P.E., Hafezi, F., Safran, A.B., Salzmann, J., 2015. Long-term results
from an epiretinal prosthesis to restore sight to the blind. Ophthalmology
122, 1547–1554.
Hornig, R., Zehnder, T., Velikay-Parel, M., Laube, T., Feucht, M., Richard, G., 2007. The
IMI retinal implant system. In: Artificial Sight. Springer, New York, NY.
Hornig, R., Dapper, M., Le Joliff, E., Hill, R., Ishaque, K., Posch, C., Benosman, R.,
Lemer, Y., Sahel, J.-A., Picaud, S., 2017. Pixium vision: first clinical results and inno-
vative developments. In: Artificial Vision. Springer, Cham, Switzerland.
Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J.,
Mech, B., Cimmarusti, V., van Boemel, G., Dagnelie, G., de Juan, E., 2003. Visual per-
ception in a blind subject with a chronic microelectronic retinal prosthesis. Vis. Res.
43, 2573–2581.
Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Sahel, J.A., Stanga, P.E.,
Cideciyan, A.V., Duncan, J.L., Eliott, D., Filley, E., Ho, A.C., Santos, A.,
Safran, A.B., Arditi, A., Del Priore, L.V., Greenberg, R.J., Argus II, S.G., 2012. Interim
results from the international trial of second sight’s visual prosthesis. Ophthalmology
119, 779–788.
Hurvich, L.M., 1981. Color Vision. Sinauer Associates, Sunderland, MA.
Jensen, R.J., Rizzo, J.F., 2006. Thresholds for activation of rabbit retinal ganglion cells with a
subretinal electrode. Exp. Eye Res. 83, 367–373.
Jeong, J., Lee, S.W., Min, K., Eom, K., Bae, S.H., Kim, S.J., 2011. Eye-surface conformable
telemetric structure for polymer-based retinal prosthesis. Proceedings for the 33rd
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, pp. 1097–1100.
Jeong, J., Lee, S.W., Min, K.S., Shin, S., Jun, S.B., Kim, S.J., 2012. Liquid crystal polymer
(LCP), an attractive substrate for retinal implant. Sens. Mater 24, 189–203.
Jeong, J., Bae, S.H., Min, K.S., Seo, J.-M., Chung, H., Kim, S.J., 2015. A miniaturized,
eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication
of liquid crystal polymer (LCP). IEEE Trans. Biomed. Eng. 62, 982–989.
Jeong, J., Bae, S.H., Seo, J.M., Chung, H., Kim, S.J., 2016. Long-term evaluation of a liquid
crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng. 13, 1–12.
Joucla, S., Yvert, B., 2009. Improved focalization of electrical microstimulation using
microelectrode arrays: a modeling study. PLoS ONE. 4, e4828.