Page 406 - Handbook of Biomechatronics
P. 406
400 Lilach Bareket et al.
Sakaguchi, H., Kamei, M., Nishida, K., Terasawa, Y., Fujikado, T., Ozawa, M., Nishida, K.,
2012. Implantation of a newly developed direct optic nerve electrode device for artificial
vision in rabbits. J. Artif. Organs 15, 295–300.
Samba, R., Herrmann, T., Zeck, G., 2015. PEDOT–CNT coated electrodes stimulate
retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng..
12, 016014.
Santos, A., Humayun, M.S., Dejuan, E., Greenburg, R.J., Marsh, M.J., Klock, I.B.,
Milam, A.H., 1997. Preservation of the inner retina in retinitis pigmentosa—a morpho-
metric analysis. Arch. Ophthalmol. 115, 511–515.
Saunders, A.L., Williams, C.E., Heriot, W., Briggs, R., Yeoh, J., Nayagam, D.A.,
Mccombe, M., Villalobos, J., Burns, O., Luu, C.D., Ayton, L.N., Mcphedran, M.,
2014. Development of a surgical procedure for implantation of a prototype
suprachoroidal retinal prosthesis. Clin. Exp. Ophthalmol. 42, 665–674.
Schimitzek, H., Roessler, G., Walter, P., 2016. Clinical results after implantation of epiretinal
visual prostheses. Klin. Monbl. Augenheilkd. 233, 1227.
Schmidt, E., Bak, M., Hambrecht, F., Kufta, C., O’Rourke, D., Vallabhanath, P., 1996.
Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation
of the visual cortex. Brain 119, 507–522.
Schuettler, M., Stiess, S., King, B.V., Suaning, G.J., 2005. Fabrication of implantable micro-
electrode arrays by laser cutting of silicone rubber and platinum foil. J. Neural Eng.
2, S121–S128.
Schwahn, H.N., Gekeler, F., Kohler, K., Kobuch, K., Sachs, H.G., Schulmeyer, F.,
Jakob, W., Gabel, V.P., Zrenner, E., 2001. Studies on the feasibility of a subretinal visual
prosthesis: data from Yucatan micropig and rabbit. Graefes Arch. Clin. Exp.
Ophthalmol. 239, 961–967.
Schwarz, D.A., Lebedev, M.A., Hanson, T.L., Dimitrov, D.F., Lehew, G., Meloy, J.,
Rajangam, S., Subramanian, V., Ifft, P.J., Li, Z., 2014. Chronic, wireless recordings
of large scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670.
Shire, D.B., Kelly, S.K., Chen, J., Doyle, P., Gingerich, M.D., Cogan, S.F., Drohan, W.A.,
Mendoza, O., Theogarajan, L., Wyatt, J.L., Rizzo, J.F., 2009. Development and implan-
tation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed.
Eng. 56, 2502–2511.
Shivdasani, M.N., Luu, C.D., Cicione, R., Fallon, J.B., Allen, P.J., Leuenberger, J.,
Suaning, G.J., Lovell, N.H., Shepherd, R.K., Williams, C.E., 2010. Evaluation of stim-
ulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis.
J. Neural Eng. 7, 036008.
Shivdasani, M.N., Fallon, J.B., Luu, C.D., Cicione, R., Allen, P.J., Morley, J.W.,
Williams, C.E., 2012. Visual cortex responses to single- and simultaneous multiple-
electrode stimulation of the retina: implications for retinal prostheses. Investig.
Ophthalmol. Vis. Sci. 53, 6291–6300.
Shoval, A., ADAMS, C., David-Pur, M., Shein, M., Hanein, Y., Sernagor, E., 2009. Carbon
nanotube electrodes for effective interfacing with retinal tissue. Front. Neuroeng. 2, 4.
Sinclair, N.C., Shivdasani, M.N., Perera, T., Gillespie, L.N., Mcdermott, H.J., Ayton, L.N.,
Blamey, P.J., 2016. The appearance of phosphenes elicited using a suprachoroidal retinal
prosthesisphosphenes of a suprachoroidal retinal prosthesis. Investig. Ophthalmol. Vis.
Sci. 57, 4948–4961.
Spencer, T.C., Fallon, J.B., Thien, P.C., Shivdasani, M.N., 2016. Spatial restriction of neural
activation using focused multipolar stimulation with a retinal prosthesisspatial restriction
of neural activation. Investig. Ophthalmol. Vis. Sci. 57, 3181–3191.
Srivastava, N., Troyk, P., 2006a. In: A proposed intracortical visual prosthesis image
processing system.27th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2005. IEEE-EMBS 2005, pp. 5264–5267.