Page 526 - Handbook of Biomechatronics
P. 526
Bioinspired and Biomimetic Micro-Robotics for Therapeutic Applications 519
Corkidi, G., Taboada, B., Wood, C.D., Guerrero, A., Darszon, A., 2008. Tracking sperm in
three-dimensions. Biochem. Biophys. Res. Commun. 373 (1), 125–129.
Diller, E., Zhuang, J., Lum, G.Z., Edwards, M.R., Sitti, M., 2014. Continuously-distributed
magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl.
Phys. Lett. 104 (17), 174101.
Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J., 2005. Micro-
scopic artificial swimmers. Nature 437, 862–865.
Durrani, A., Hayward, J.A., Chapman, D., 1986. Biomembranes as models for polymer sur-
faces. II. The synthesis of reactive species for covalent coupling of phosphorylcholine to
polymer surfaces. Biomaterials 7 (2), 121–125.
Einstein, A., 1956. Investigations on the Theory of the Brownian Movement. Dover Pub-
lications, Inc., NY, USA
Fauci, L.J., McDonald, A., 1995. Sperm motility in the presence of boundaries. Bull. Math.
Biol. 57 (5), 679–699.
Felfoul, O., Martel, S., 2013. Assessment of navigation control strategy for magnetotactic
bacteria in microchannel: toward targeting solid tumors. Biomed. Microdevices
15 (6), 1015–1024.
Feynman, R.P., 1992. There is plenty of room at the bottom. J. Microelectromech. Syst.
1 (1), 60–66.
Feynman, R.P., 1993. Infinitesimal machinery. J. Microelectromech. Syst. 2 (1), 4–14.
Flores, H., Lobaton, E., M endez-Diez, S., Tlupova, S., Cortez, R., 2005. A study of bacterial
flagellar bundling. Bull. Math. Biol. 67 (1), 137–168.
Fountain, T.W.R., Kailat, P.V., Abbott, J.J., 2010. In: Wireless control of magnetic helical
microrobots using a rotating-permanent-magnet manipulator.Proceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage Convention
District, May 3–8, Anchorage, Alaska, USA, pp. 576–581.
Frymier, P.D., Ford, R.M., Berg, H.C., Cummings, P.T., 1995. Three-dimensional track-
ing of the motile bacteria near a solid planar surface. Proc. Nat. Acad. Sci. U. S. A.
92 (13), 6195–6199.
Galajda, P., Ormos, P., 2001. Complex micromachines produced and driven by light. Appl.
Phys. Lett. 78 (2), 249–251.
Gauger, E.M., Stark, H., 2006. Numerical study of a microscopic artificial swimmer. Phys.
Rev. E 74, 021907.
Ghosh, A., Fischer, P., 2009. Controlled propulsion of artificial magnetic nanostructured
propellers. ACS Nano Lett. 9 (6), 2243–2245.
Gibbons, I.R., Gibbons, B.H., 1980. Transient flagellar waveforms during intermittent
swimming in sea urchin sperm. I. Wave parameters. J. Muscle Res. Cell Motil. 1 (1),
31–59.
Gorbet, M.B., Sefton, M.V., 2004. Biomaterial-associated thrombosis: roles of coagulation
factors, complement, platelets and leukocytes. Biomaterials 25 (26), 5681–5703.
Gray, J., Hancock, G.J., 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32 (4),
802–814.
Guyon, E., Hulin, J.P., Petit, L., Mitescu, C.D., 2015. Physical Hydrodynamics, second ed.
Oxford University Press, London, UK (Chapter 4).
Hancock, G.J., 1953. The self-propulsion of microscopic organisms through liquids. Proc.
R. Soc. Lond. A Math. Phys. Sci. 217 (1128), 96–121.
Happel, J., Brenner, H., 1965. Low Reynolds Number Hydrodynamics With Special Appli-
cations to Particulate Media. Prentice-Hall, Inc., NJ, USA (Chapter 7).
Higdon, J.J.L., 1979. A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech.
90 (part 4), 685–711.
Higdon, J.J.L., Muldowney, G.P., 1995. Resistance functions for spherical particles, droplets
and bubbles in cylindrical tubes. J. Fluid Mech. 298, 193–210.