Page 530 - Handbook of Biomechatronics
P. 530
Bioinspired and Biomimetic Micro-Robotics for Therapeutic Applications 523
Stricker, L., 2017. Numerical simulation of artificial microswimmers driven by Marangoni
flow. J. Comput. Phys. 347, 467–489.
Tabak, A.F., 2018. Hydrodynamic impedance of bacteria and bacteria-inspired micro-
swimmers: a new strategy to predict power consumption of swimming micro-robots
for real-time applications. Adv. Theory Simul. 1 (4), 1700013.
Tabak, A.F., Yesilyurt, S., 2014a. Computationally-validated surrogate models for optimal
geometric design of bio-inspired swimming robots: helical swimmers. Comp. Fluids
99, 190–198.
Tabak, A.F., Yesilyurt, S., 2014b. Improved kinematic models for two-link helical micro/
nanoswimmers. IEEE Trans. Robot. 30 (1), 14–25 (special issue on nanorobotics).
Tabak, A.F., Temel, F.Z., Yesilyurt, S., 2011. In: Comparison on experimental and numer-
ical results for helical swimmers inside channels.Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, September 25–30, San
Francisco, California, pp. 463–468.
Takano, Y., Goto, T., 2003. Numerical analysis of small deformation of flexible helical fla-
gellum of swimming bacteria. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf.
46 (4), 1234–1240 (special issue on bioengineering, released on June 2004).
Taylor, G., 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A
209, 447–461.
Teran, J., Fauci, L., Shelley, M., 2010. Viscoelastic fluid response can increase the speed and
efficiency of a free swimmer. Phys. Rev. Lett. 104, 038101.
Tjeung, R.T., Hughes, M.S., Yeo, L.Y., Friend, J.R., 2011. Surface acoustic wave micro-
motor with arbitrary axis rotational capability. Appl. Phys. Lett. 99 (21), 214101.
Uenoyama, A., Miyata, M., 2005. Gliding ghosts of Mycoplasma mobile. Proc. Natl. Acad. Sci.
U. S. A. 102 (36), 12754–12758.
Wang, S., Ardekani, A.M., 2012. Unsteady swimming of small organisms. J. Fluid Mech.
702, 286–297.
Wiggins, C.H., Goldstein, R.E., 1998. Flexive and propulsive dynamics of elastica at low
Reynolds number. Phys. Rev. Lett. 80 (17), 3879–3882.
Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A., 2014. A self-propelled biohybrid
swimmer at low Reynolds number. Nat. Commun. 5, 3081.
Woolley, D.M., Vernon, G.G., 2001. Study of helical and planar waves on sea urchin sperm
flagella, with a theory of how they are generated. J. Exp. Biol. 204 (pt. 7), 1333–1345.
Yan, X., Zhou, Q., Vincent, M., Deng, Y., Yu, J., Xu, J., Xu, T., Tang, T., Bian, L.,
Wang, Y.-X.J., Kostarelos, K., Zhang, L., 2017. Multifunctional biohybrid magnetite
microrobots for imaging-guided therapy. Sci. Robot. 2(12). eaaq1155.
Yu, C., Kim, J., Choi, H., Choi, J., Jeong, S., Cha, K., Park, J.-O., Park, S., 2010. Novel
electromagnetic actuation system for three-dimensional locomotion and drilling of intra-
vascular microrobot. Sens. Actuators A: Phys. 161 (1–2), 297–304.
Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J., 2009. Artificial
bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94 (6), 064107.
Zhang, L., Ye, M., Giataganas, P., Hughes, M., Bradu, A., Podoleanu, A., Yang, G.-Z.,
2017. From macro to micro: autonomous multiscale image fusion for robotic surgery.
IEEE Robot. Autom. Mag. 24 (2), 63–72.

