Page 528 - Handbook of Biomechatronics
P. 528
Bioinspired and Biomimetic Micro-Robotics for Therapeutic Applications 521
Ko ´sa, G., Shoham, M., Zaaroor, M., 2007. Propulsion method for swimming microrobots.
IEEE Trans. Robot. 23 (1), 137–150.
Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J., 2010.
OctoMag: an electromagnetic system for 5-dof wireless micromanipulation. IEEE Trans.
Robot. 26 (6), 1006–1017.
Lal, A., Blanchard, J., 2004. Nuclear batteries: the daintiest dynamos. IEEE Spectrum 41 (9),
36–41.
Landau, L.D., Lifshitz, E.M., 2005. Fluid mechanics. In: Course of Theoretical Physics. sec-
ond English ed., Revised vol. 6. Elsevier Butterworth Heinemann, China (Chapter 24).
Larm, O., Larsson, R., Olsson, P., 1983. A new non-thrombogenic surface prepared by
selective covalent binding of heparin via a modified reducing terminal residue. Biomater.
Med. Devices Artif. Organs 11 (2–3), 161–173.
Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A., 2006. Swimming in circles:
motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400–412.
Lighthill, J., 1976. Flagellar hydrodynamics: the John von Neumann lecture, 1975. SIAM
Rev. 18 (2), 161–230.
Lighthill, J., 1996. Helical distributions of Stokeslets. J. Eng. Math 30 (1), 35–78.
Liu, B., Powers, T.R., Breuer, K.S., 2011. Force-free swimming of a model helical flagellum
in viscoelastic fluids. Proc. Natl. Acad. Sci. U. S. A. 108 (49), 19516–19520.
Liu, X., Yuan, L., Li, D., Tang, Z., Wang, Y., Chen, G., Chen, H., Brash, J.L., 2014. Blood
compatible materials: state of the art. J. Mater. Chem. B 2 (35), 5718–5738.
Lovalenti, P.M., Brady, J.F., 1993. The hydrodynamic force on a rigid particle undergoing
arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech.
256, 6561–6605.
Mahoney, A.W., Sarrazin, J.C., Bamberg, E., Abbott, J.J., 2011. Velocity control with grav-
ity compensation for magnetic helical microswimmers. Adv. Robot. 25 (8), 1007–1028.
Maniyeri, R., Suh, Y.K., Kang, S., Kim, M.J., 2012. Numerical study on the propulsion of a
bacterial flagellum in a viscous fluid using an immersed boundary method. Comput.
Fluids 62, 13–24.
Martel, S., 2017. Beyond imaging: macro- and microscale medical robots actuated by clinical
MRI scanners. Sci. Rob. 2(3)eaam8119.
Martel, S., Felfoul, O., Mathieu, J.-B., Chanu, A., Tamaz, S., Mohammadi, M.,
Mankiewicz, M., Tabatabaei, N., 2009. MRI-based medical nanorobotic platform for
the control of magnetic nanoparticles and flagellated bacteria for target interventions
in human capillaries. Int. J. Robot. Res. 28 (9), 1169–1182.
Merrill, E.W., Salzman, E.W., 1983. Polyethylene oxide as a biomaterial. Am. Soc. Artif.
Intern. Organs 6, 60–64.
Nelson, B.J., Peyer, K.E., 2014. Micro- and nanorobots swimming in heterogeneous liquids.
ACS Nano 8 (9), 8718–8724.
Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F., Schmidt, M.A., 2003. In:
A thermophotovoltaic micro-generator for portable power applications.The 12th Inter-
national Conference on Solid-State Sensors, Actuators and Microsystems, June 8–12,
Boston, MA, USA, vol. 1. pp. 714–717.
Ning, L., Cannon, M.C., 1998. Gas vesicle genes identified in Bacillus megaterium and func-
tional expression in Escherichia coli. J. Bacteriol. 180 (9), 2450–2458.
Nogawa, K., Kojima, M., Nakajima, M., Kojima, S., Homma, M., Fukuda, T., 2009.
+
Rotational speed control of Na -driven flagellar motor by dual pipettes. IEEE Trans.
Nanobiosci. 8 (4), 341–348.
Ogata, K., 1998. System Dynamics, third ed. Prentice-Hall, Inc., NJ, USA (Chapter 8).
Ortigueira, M.D., 2011. Fractional Calculus for Scientists and Engineers. Springer,
Heidelberg, Germany (Chapter 2).

