Page 66 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 66

54   Chapter 2 Deep convolutional neural network in medical image processing




                                     [32] Y. Kobayashi, H. Kobayashi, J.T. Giles, I. Yokoe, M. Hirano, Y. Nakajima,
                                         M. Takei, Detection of left ventricular regional dysfunction and
                                         myocardial abnormalities using complementary cardiac magnetic
                                         resonance imaging in patients with systemic sclerosis without cardiac
                                         symptoms: a pilot study, Intern. Med. 55 (3) (2016) 237e243.
                                     [33] I. Cabria, I. Gondra, MRI segmentation fusion for brain tumor detection,
                                         Inf. Fusion 36 (2017) 1e9.
                                     [34] G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian,
                                         J.A. Van Der Laak, B. Van Ginneken, C.I. S  anchez, A survey on deep
                                         learning in medical image analysis, Med. Image Anal. 42 (2017) 60e88.
                                     [35] X. Cheng, L. Zhang, Y. Zheng, Deep similarity learning for multimodal
                                         medical images, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6
                                         (3) (2018) 248e252.
                                     [36] M. Simonovsky, B. Guti  errez-Becker, D. Mateus, N. Navab, N. Komodakis,
                                         October. A deep metric for multimodal registration, in: International
                                         Conference on Medical Image Computing and Computer-Assisted
                                         Intervention, Springer, Cham, 2016, pp. 10e18.
                                     [37] S. Miao, Z.J. Wang, R. Liao, A CNN regression approach for real-time 2D/
                                         3D registration, IEEE Trans. Med. Imaging 35 (5) (2016) 1352e1363.
                                     [38] N. Tajbakhsh, J.Y. Shin, S.R. Gurudu, R.T. Hurst, C.B. Kendall,
                                         M.B. Gotway, J. Liang, Convolutional neural networks for medical image
                                         analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35 (5)
                                         (2016) 1299e1312.
                                     [39] D.H. Hubel, T.N. Wiesel, Receptive fields of single neurones in the cat's
                                         striate cortex, J. Physiol. 148 (3) (1959) 574e591.
                                     [40] S.M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, M.K. Khan,
                                         Medical image analysis using convolutional neural networks: a review,
                                         J. Med. Syst. 42 (11) (2018) 226.
                                     [41] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
                                         applied to document recognition, Proc. IEEE 86 (11) (1998) 2278e2324.
                                     [42] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
                                         convolutional neural networks, in: Advances in Neural Information
                                         Processing Systems, 2012, pp. 1097e1105.
                                     [43] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-
                                         Scale Image Recognition, 2014 arXiv preprint arXiv:1409.1556.
                                     [44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
                                         V. Vanhoucke, A. Rabinovich, Going Deeper with Convolutions, 2014,
                                         p. 1409, arXiv 2014. arXiv preprint arXiv:1409.4842.
                                     [45] M. Lin, Q. Chen, S. Yan, Network in Network, 2013 arXiv preprint arXiv:
                                         1312.4400.
                                     [46] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
                                         recognition, in: Proceedings of the IEEE Conference on Computer Vision
                                         and Pattern Recognition, 2016, pp. 770e778.
                                     [47] V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy,
                                         S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, Development
                                         and validation of a deep learning algorithm for detection of diabetic
                                         retinopathy in retinal fundus photographs, Jama 316 (22) (2016)
                                         2402e2410.
                                     [48] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun,
                                         Dermatologist-level classification of skin cancer with deep neural
                                         networks, Nature 542 (7639) (2017) 115e118.
   61   62   63   64   65   66   67   68   69   70   71