Page 67 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 67
Chapter 2 Deep convolutional neural network in medical image processing 55
[49] Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko,
S. Venugopalan, A. Timofeev, P.Q. Nelson, G.S. Corrado, J.D. Hipp,
Detecting Cancer Metastases on Gigapixel Pathology Images, 2017 arXiv
preprint arXiv:1703.02442.
[50] K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane,
D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with
fully connected CRF for accurate brain lesion segmentation, Med. Image
Anal. 36 (2017) 61e78.
[51] C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical
features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8)
(2012) 1915e1929.
[52] P. Moeskops, M.A. Viergever, A.M. Mendrik, L.S. De Vries, M.J. Benders,
I. I sgum, Automatic segmentation of MR brain images with a
convolutional neural network, IEEE Trans. Med. Imaging 35 (5) (2016)
1252e1261.
[53] W. Yang, Y. Chen, Y. Liu, L. Zhong, G. Qin, Z. Lu, Q. Feng, W. Chen,
Cascade of multi-scale convolutional neural networks for bone
suppression of chest radiographs in gradient domain, Med. Image Anal.
35 (2017) 421e433.
[54] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, M. Nielsen, Deep
feature learning for knee cartilage segmentation using a triplanar
convolutional neural network, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, Berlin,
Heidelberg, 2013, September, pp. 246e253.
[55] H.R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. Cherry, L. Kim, R.M. Summers,
Improving computer-aided detection using convolutional neural networks
and random view aggregation, IEEE Trans. Med. Imaging 35 (5) (2015)
1170e1181.
[56] A.A.A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S.J. Van Riel,
M.M.W. Wille, M. Naqibullah, C.I. S anchez, B. van Ginneken, Pulmonary
nodule detection in CT images: false positive reduction using multi-view
convolutional networks, IEEE Trans. Med. Imaging 35 (5) (2016)
1160e1169.
[57] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for
semantic segmentation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431e3440.
[58] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, Cham,
2015, October, pp. 234e241.
[59] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D U-
Net: learning dense volumetric segmentation from sparse annotation, in:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, Cham, 2016, October, pp. 424e432.
[60] F. Milletari, N. Navab, S.A. Ahmadi, V-net: fully convolutional neural
networks for volumetric medical image segmentation, in: 2016 Fourth
International Conference on 3D Vision (3DV), IEEE, 2016, October,
pp. 565e571.
[61] A. Payan, G. Montana, Predicting Alzheimer's Disease: A Neuroimaging
Study with 3D Convolutional Neural Networks, 2015 arXiv preprint arXiv:
1502.02506.