Page 67 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 67

Chapter 2 Deep convolutional neural network in medical image processing  55




                [49] Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko,
                    S. Venugopalan, A. Timofeev, P.Q. Nelson, G.S. Corrado, J.D. Hipp,
                    Detecting Cancer Metastases on Gigapixel Pathology Images, 2017 arXiv
                    preprint arXiv:1703.02442.
                [50] K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane,
                    D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with
                    fully connected CRF for accurate brain lesion segmentation, Med. Image
                    Anal. 36 (2017) 61e78.
                [51] C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical
                    features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8)
                    (2012) 1915e1929.
                [52] P. Moeskops, M.A. Viergever, A.M. Mendrik, L.S. De Vries, M.J. Benders,
                    I. I  sgum, Automatic segmentation of MR brain images with a
                    convolutional neural network, IEEE Trans. Med. Imaging 35 (5) (2016)
                    1252e1261.
                [53] W. Yang, Y. Chen, Y. Liu, L. Zhong, G. Qin, Z. Lu, Q. Feng, W. Chen,
                    Cascade of multi-scale convolutional neural networks for bone
                    suppression of chest radiographs in gradient domain, Med. Image Anal.
                    35 (2017) 421e433.
                [54] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, M. Nielsen, Deep
                    feature learning for knee cartilage segmentation using a triplanar
                    convolutional neural network, in: International Conference on Medical
                    Image Computing and Computer-Assisted Intervention, Springer, Berlin,
                    Heidelberg, 2013, September, pp. 246e253.
                [55] H.R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. Cherry, L. Kim, R.M. Summers,
                    Improving computer-aided detection using convolutional neural networks
                    and random view aggregation, IEEE Trans. Med. Imaging 35 (5) (2015)
                    1170e1181.
                [56] A.A.A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S.J. Van Riel,
                    M.M.W. Wille, M. Naqibullah, C.I. S  anchez, B. van Ginneken, Pulmonary
                    nodule detection in CT images: false positive reduction using multi-view
                    convolutional networks, IEEE Trans. Med. Imaging 35 (5) (2016)
                    1160e1169.
                [57] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for
                    semantic segmentation, in: Proceedings of the IEEE Conference on
                    Computer Vision and Pattern Recognition, 2015, pp. 3431e3440.
                [58] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for
                    biomedical image segmentation, in: International Conference on Medical
                    Image Computing and Computer-Assisted Intervention, Springer, Cham,
                    2015, October, pp. 234e241.
                [59] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D U-
                    Net: learning dense volumetric segmentation from sparse annotation, in:
                    International Conference on Medical Image Computing and Computer-
                    Assisted Intervention, Springer, Cham, 2016, October, pp. 424e432.
                [60] F. Milletari, N. Navab, S.A. Ahmadi, V-net: fully convolutional neural
                    networks for volumetric medical image segmentation, in: 2016 Fourth
                    International Conference on 3D Vision (3DV), IEEE, 2016, October,
                    pp. 565e571.
                [61] A. Payan, G. Montana, Predicting Alzheimer's Disease: A Neuroimaging
                    Study with 3D Convolutional Neural Networks, 2015 arXiv preprint arXiv:
                    1502.02506.
   62   63   64   65   66   67   68   69   70   71   72