Page 71 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 71
Chapter 2 Deep convolutional neural network in medical image processing 59
[106] Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, H. Greenspan, Chest
pathology identification using deep feature selection with non-medical
training, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6 (3)
(2018) 259e263.
[107] W. Shen, M. Zhou, F. Yang, D. Dong, C. Yang, Y. Zang, J. Tian, Learning
from experts: developing transferable deep features for patient-level lung
cancer prediction, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, Cham, 2016,
October, pp. 124e131.
[108] S. Christodoulidis, M. Anthimopoulos, L. Ebner, A. Christe,
S. Mougiakakou, Multisource transfer learning with convolutional neural
networks for lung pattern analysis, IEEE J. Biomed. Health Inform. 21 (1)
(2016) 76e84.
[109] O. Emad, I.A. Yassine, A.S. Fahmy, Automatic localization of the left
ventricle in cardiac MRI images using deep learning, in: 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), IEEE, 2015, August, pp. 683e686.
[110] M. Zreik, T. Leiner, B.D. De Vos, R.W. van Hamersvelt, M.A. Viergever,
I. I sgum, Automatic segmentation of the left ventricle in cardiac CT
angiography using convolutional neural networks, in: 2016 IEEE 13th
International Symposium on Biomedical Imaging (ISBI), IEEE, 2016, April,
pp. 40e43.
[111] J.M. Wolterink, T. Leiner, B.D. de Vos, R.W. van Hamersvelt,
M.A. Viergever, I. I sgum, Automatic coronary artery calcium scoring in
cardiac CT angiography using paired convolutional neural networks, Med.
Image Anal. 34 (2016) 123e136.
[112] M.A. G€ uls€ un, G. Funka-Lea, P. Sharma, S. Rapaka, Y. Zheng, Coronary
centerline extraction via optimal flow paths and CNN path pruning, in:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, Cham, 2016, October, pp. 317e325.
[113] M. Moradi, Y. Gur, H. Wang, P. Prasanna, T. Syeda-Mahmood, A hybrid
learning approach for semantic labeling of cardiac CT slices and
recognition of body position, in: 2016 IEEE 13th International Symposium
on Biomedical Imaging (ISBI), IEEE, 2016, April, pp. 1418e1421.
[114] H. Chen, Y. Zheng, J.H. Park, P.A. Heng, S.K. Zhou, Iterative multi-domain
regularized deep learning for anatomical structure detection and
segmentation from ultrasound images, in: International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer,
Cham, 2016, October, pp. 487e495.
[115] L. Zhang, A. Gooya, B. Dong, R. Hua, S.E. Petersen, P. Medrano-Gracia,
A.F. Frangi, Automated quality assessment of cardiac MR images using
convolutional neural networks, in: International Workshop on Simulation
and Synthesis in Medical Imaging, Springer, Cham, 2016, October,
pp. 138e145.
[116] H. Yang, J. Sun, H. Li, L. Wang, Z. Xu, Deep fusion net for multi-atlas
segmentation: application to cardiac MR images, in: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, Cham, 2016, October, pp. 521e528.
[117] O. Oktay, W. Bai, M. Lee, R. Guerrero, K. Kamnitsas, J. Caballero, A. de
Marvao, S. Cook, D. O'Regan, D. Rueckert, Multi-input cardiac image
super-resolution using convolutional neural networks, in: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, Cham, 2016, October, pp. 246e254.