Page 70 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 70

58   Chapter 2 Deep convolutional neural network in medical image processing




                                     [91] M.D. Abràmoff, Y. Lou, A. Erginay, W. Clarida, R. Amelon, J.C. Folk,
                                         M. Niemeijer, Improved automated detection of diabetic retinopathy on a
                                         publicly available dataset through integration of deep learning, Investig.
                                         Ophthalmol. Vis. Sci. 57 (13) (2016) 5200e5206.
                                     [92] A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, R. Ben-Ari, E. Barkan,
                                         A region based convolutional network for tumor detection and
                                         classification in breast mammography, in: Deep Learning and Data
                                         Labeling for Medical Applications, Springer, Cham, 2016, pp. 197e205.
                                     [93] J. Arevalo, F.A. Gonz  alez, R. Ramos-Poll  an, J.L. Oliveira, M.A. Lopez,
                                         Representation learning for mammography mass lesion classification with
                                         convolutional neural networks, Comput. Methods Progr. Biomed. 127
                                         (April 1, 2016) 248e257.
                                     [94] M.U. Dalmıs, G. Litjens, K. Holland, A. Setio, R. Mann, N. Karssemeijer,
                                         A. Gubern-M  erida, Using deep learning to segment breast and
                                         fibroglandular tissue in MRI volumes, Med. Phys. 44 (2) (2017) 533e546.
                                     [95] A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul, R. Kimmel,
                                         Computational mammography using deep neural networks, Comput.
                                         Methods Biomech. Biomed. Eng.: Imaging Vis. 6 (3) (2018) 243e247.
                                     [96] N. Dhungel, G. Carneiro, A.P. Bradley, The automated learning of deep
                                         features for breast mass classification from mammograms, in:
                                         International Conference on Medical Image Computing and Computer-
                                         Assisted Intervention, Springer, Cham, 2016, October, pp. 106e114.
                                     [97] P. Kisilev, E. Sason, E. Barkan, S. Hashoul, Medical image description
                                         using multi-task-loss CNN, in: Deep Learning and Data Labeling for
                                         Medical Applications, Springer, Cham, 2016, pp. 121e129.
                                     [98] T. Kooi, G. Litjens, B. Van Ginneken, A. Gubern-M  erida, C.I. S  anchez,
                                         R. Mann, A. den Heeten, N. Karssemeijer, Large scale deep learning for
                                         computer aided detection of mammographic lesions, Med. Image Anal. 35
                                         (2017) 303e312.
                                     [99] T. Kooi, B. van Ginneken, N. Karssemeijer, A. den Heeten, Discriminating
                                         solitary cysts from soft tissue lesions in mammography using a pretrained
                                         deep convolutional neural network, Med. Phys. 44 (3) (2017) 1017e1027.
                                    [100] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S. Molloi, P. Baldi,
                                         Detecting cardiovascular disease from mammograms with deep learning,
                                         IEEE Trans. Med. Imaging 36 (5) (2017) 1172e1181.
                                    [101] F. Ciompi, B. de Hoop, S.J. van Riel, K. Chung, E.T. Scholten, M. Oudkerk,
                                         P.A. de Jong, M. Prokop, B. van Ginneken, Automatic classification of
                                         pulmonary peri-fissural nodules in computed tomography using an
                                         ensemble of 2D views and a convolutional neural network out-of-the-box,
                                         Med. Image Anal. 26 (1) (2015) 195e202.
                                    [102] C. Wang, A. Elazab, J. Wu, Q. Hu, Lung nodule classification using deep
                                         feature fusion in chest radiography, Comput. Med. Imaging Graph. 57
                                         (2017) 10e18.
                                    [103] A. Rajkomar, S. Lingam, A.G. Taylor, M. Blum, J. Mongan, High-
                                         throughput classification of radiographs using deep convolutional neural
                                         networks, J. Digit. Imaging 30 (1) (2017) 95e101.
                                    [104] H.E. Kim, S. Hwang, Deconvolutional Feature Stacking for Weakly-
                                         Supervised Semantic Segmentation, 2016 arXiv preprint arXiv:1602.04984.
                                    [105] M. Cicero, A. Bilbily, E. Colak, T. Dowdell, B. Gray, K. Perampaladas,
                                         J. Barfett, Training and validating a deep convolutional neural network for
                                         computer-aided detection and classification of abnormalities on frontal
                                         chest radiographs, Invest. Radiol. 52 (5) (2017) 281e287.
   65   66   67   68   69   70   71   72   73   74   75