Page 70 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 70
58 Chapter 2 Deep convolutional neural network in medical image processing
[91] M.D. Abràmoff, Y. Lou, A. Erginay, W. Clarida, R. Amelon, J.C. Folk,
M. Niemeijer, Improved automated detection of diabetic retinopathy on a
publicly available dataset through integration of deep learning, Investig.
Ophthalmol. Vis. Sci. 57 (13) (2016) 5200e5206.
[92] A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, R. Ben-Ari, E. Barkan,
A region based convolutional network for tumor detection and
classification in breast mammography, in: Deep Learning and Data
Labeling for Medical Applications, Springer, Cham, 2016, pp. 197e205.
[93] J. Arevalo, F.A. Gonz alez, R. Ramos-Poll an, J.L. Oliveira, M.A. Lopez,
Representation learning for mammography mass lesion classification with
convolutional neural networks, Comput. Methods Progr. Biomed. 127
(April 1, 2016) 248e257.
[94] M.U. Dalmıs, G. Litjens, K. Holland, A. Setio, R. Mann, N. Karssemeijer,
A. Gubern-M erida, Using deep learning to segment breast and
fibroglandular tissue in MRI volumes, Med. Phys. 44 (2) (2017) 533e546.
[95] A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul, R. Kimmel,
Computational mammography using deep neural networks, Comput.
Methods Biomech. Biomed. Eng.: Imaging Vis. 6 (3) (2018) 243e247.
[96] N. Dhungel, G. Carneiro, A.P. Bradley, The automated learning of deep
features for breast mass classification from mammograms, in:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, Cham, 2016, October, pp. 106e114.
[97] P. Kisilev, E. Sason, E. Barkan, S. Hashoul, Medical image description
using multi-task-loss CNN, in: Deep Learning and Data Labeling for
Medical Applications, Springer, Cham, 2016, pp. 121e129.
[98] T. Kooi, G. Litjens, B. Van Ginneken, A. Gubern-M erida, C.I. S anchez,
R. Mann, A. den Heeten, N. Karssemeijer, Large scale deep learning for
computer aided detection of mammographic lesions, Med. Image Anal. 35
(2017) 303e312.
[99] T. Kooi, B. van Ginneken, N. Karssemeijer, A. den Heeten, Discriminating
solitary cysts from soft tissue lesions in mammography using a pretrained
deep convolutional neural network, Med. Phys. 44 (3) (2017) 1017e1027.
[100] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S. Molloi, P. Baldi,
Detecting cardiovascular disease from mammograms with deep learning,
IEEE Trans. Med. Imaging 36 (5) (2017) 1172e1181.
[101] F. Ciompi, B. de Hoop, S.J. van Riel, K. Chung, E.T. Scholten, M. Oudkerk,
P.A. de Jong, M. Prokop, B. van Ginneken, Automatic classification of
pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box,
Med. Image Anal. 26 (1) (2015) 195e202.
[102] C. Wang, A. Elazab, J. Wu, Q. Hu, Lung nodule classification using deep
feature fusion in chest radiography, Comput. Med. Imaging Graph. 57
(2017) 10e18.
[103] A. Rajkomar, S. Lingam, A.G. Taylor, M. Blum, J. Mongan, High-
throughput classification of radiographs using deep convolutional neural
networks, J. Digit. Imaging 30 (1) (2017) 95e101.
[104] H.E. Kim, S. Hwang, Deconvolutional Feature Stacking for Weakly-
Supervised Semantic Segmentation, 2016 arXiv preprint arXiv:1602.04984.
[105] M. Cicero, A. Bilbily, E. Colak, T. Dowdell, B. Gray, K. Perampaladas,
J. Barfett, Training and validating a deep convolutional neural network for
computer-aided detection and classification of abnormalities on frontal
chest radiographs, Invest. Radiol. 52 (5) (2017) 281e287.