Page 240 - Handbook of Properties of Textile and Technical Fibres
P. 240
214 Handbook of Properties of Textile and Technical Fibres
A key factor for the exceptional level of the combination of strength and toughness
of spider silk can be attributed to the liquid crystalline nature as reflected in the
intrinsic viscoelastic behavior of the silk. Experimental observations over a broad
spectrum of stress, strain, and frequency levels showed that spider silk is nonlinearly
viscoelastic with strain insensitive hysteresis characteristics. On the basis of these
experimental observations a generalized constitutive relationship was postulated in
terms of a quasilinear viscoelastic model. This model provides a convenient means
to quantify the stress-strain-time behavior of spider silk.
Acknowledgments
This support of Canada Foundation of Innovation (CFI) and NSERC through the Discovery
Grant are greatly appreciated. This chapter is dedicated to our colleague the late Professor
John Gosline who pioneered the study of spider silk and the mechanical properties of
biomaterials.
References
Abramowitz M, Stegun IA: Handbook of mathematical functions: with formulas, graphs, and
mathematical tables, Courier Corporation.
Augsten K, Muehlig P, Herrmann C: Glycoproteins and skin-core structure in Nephila clavipes
spider silk observed by light and electron microscopy, Scanning 22(1):12e15, 2000.
Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu C, Gogotsi Y, et al.: Carbon nanotube reinforced
Bombyx mori silk nanofibers by the electrospinning process, Biomacromolecules 7(1):
208e214, 2006.
Becker R: Elastische nachwirkung und plastizit€ at, Zeitschrift f€ ur Physik 33(1):185e213, 1925.
Beckwitt R, Arcidiacono S: Sequence conservation in the C-terminal region of spider silk
proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius
(Araneidae), J Biol Chem 269(9):6661e6663, 1994.
Beckwitt R, Arcidiacono S, Stote R: Evolution of repetitive proteins: spider silks from Nephila
clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae), Insect Biochem Mol Biol
28(3):121e130, 1998.
Blackledge TA, Cardullo RA, Hayashi CY: Polarized light microscopy, variability in spider silk
diameters, and the mechanical characterization of spider silk, Invertebr Biol 124(2):
165e173, 2005.
Bolduc M, Lazaris A: Spider silk-based advanced performance fiber for improved personnel
ballistic protection systems, Technical Memorandum DRDC Valcartier TM 2002, 2002,
Defence R & D Canada Valcartier.
Boltzmann L: Zur Theorie de elastischen Nachvirkupg, Sitzber Kgl Akad Wiss Wien, Math-
Naturw 70, 1874.
Bronzino JD: Biomedical engineering handbook, CRC Press.
Brown CP, Whaite AD, MacLeod JM, Macdonald J, Rosei F: With great structure comes great
functionality: understanding and emulating spider silk, J Mater Res 30(1):108e120, 2015.
Cameron JR, Skofronick JG, Grant RM: Physics of the body, Madison, 1999, Medical Physics
Pub.