Page 242 - Handbook of Properties of Textile and Technical Fibres
P. 242
216 Handbook of Properties of Textile and Technical Fibres
Guinea GV, Elices M, Perez-Rigueiro J, Plaza GR: Stretching of supercontracted fibers: a link
between spinning and the variability of spider silk, J Exp Biol 208(1):25e30, 2005.
Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, et al.: A conserved spider silk
domain acts as a molecular switch that controls fibre assembly, Nature 465(7295):
239e242, 2010.
Halsey G, White HJ, Eyring H: The mechanical properties of textiles, II. A general theory of
elasticity with application to partially rubber-like substances, Textil Res J 15(12):451e459,
1945.
Hayashi CY, Lewis RV: Evidence from flagelliform silk cDNA for the structural basis of
elasticity and modular nature of spider silks, J Mol Biol Biol 275(5):773e784, 1998.
Hayashi CY, Lewis RV: Molecular architecture and evolution of a modular spider silk protein
gene, Science 287(5457):1477, 2000.
Hayashi CY, Shipley NH, Lewis RV: Hypotheses that correlate the sequence, structure, and
mechanical properties of spider silk proteins, Int J Biol Macromol 24(2e3):271e275,
1999.
Hayashi C, Blackledge T, Lewis R: Molecular and mechanical characterization of aciniform silk:
uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene
family, Mol Biol Evol 21(10):1950, 2004.
Hinman MB, Lewis RV: Isolation of a clone encoding a second dragline silk fibroin. Nephila
clavipes dragline silk is a two-protein fiber, J Biol Chem 267(27):19320e19324, 1992.
Hinman M, Dong Z, Xu M, Lewis RV: Spider silk: a mystery starting to unravel. In Structure,
cellular synthesis and assembly of biopolymers, Springer, pp 227e254.
Hopkins I: Iterative calculation of relaxation spectra from relaxation data, Technical Memo-
randum, Bell Telephone Laboratories, Inc.
Hopkins I: Iterative calculation of relaxation spectrum from free vibration data, J Appl Polym Sci
7(3):971e992, 1963.
Hopkins I, Hamming R: On creep and relaxation, J Appl Phys 28(8):906e909, 1957.
Humenik M, Smith AM, Scheibel T: Recombinant spider silksdbiopolymers with potential for
future applications, Polymers 3(1):640, 2011.
Ittah S, Cohen S, Garty S, Cohn D, Gat U: An essential role for the C-Terminal Domain of A
Dragline spider silk protein in directing fiber formation, Biomacromolecules 7(6):
1790e1795, 2006.
Jelinski LW, Blye A, Liivak O, Michal C, LaVerde G, Seidel A, et al.: Orientation, structure,
wet-spinning, and molecular basis for supercontraction of spider dragline silk, Int J Biol
Macromol 24(2e3):197e201, 1999.
Kaplan D, Adams WW, Farmer B, Viney C: Silk polymers: materials science and biotech-
nology, ACS Publications.
Katz DS: Solid state NMR investigations of protein based biomaterials: spider silk, recombinant
spider silk proteins, and electrospun recombinant spider silk proteins, Vancouver, BC,
Canada, 2006, University of British Columbia.
Kawabata S: Micromeasurement of mechanical properties of single fibers, New York, 1996,
Marcel Dekker.
Kenney JM, Knight D, Wise MJ, Vollrath F: Amyloidogenic nature of spider silk, Eur J Bio-
chem 269(16):4159e4163, 2002.
Keten S, Buehler MJ: Nanostructure and molecular mechanics of spider dragline silk protein
assemblies, J R Soc Interface, 2010.
Keten S, Xu Z, Ihle B, Buehler MJ: Nanoconfinement controls stiffness, strength and mechanical
toughness of [beta]-sheet crystals in silk, Nat Mater 9(4):359e367, 2010.