Page 244 - Handbook of Properties of Textile and Technical Fibres
P. 244
218 Handbook of Properties of Textile and Technical Fibres
Meluch WC: Calculation of dynamic spectra from relaxation data. In Proc technological aspects
of the mechanical behavior of polymers: Witco award symposium honoring Dr Turner
Alfrey, Wiley, p 55.
Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV: Analysis of the conserved N-terminal
domains in major ampullate spider silk proteins, Biomacromolecules 6(6):3152e3159,
2005.
Motro R: Tensegrity systems: the state of the art, Int J Space Struct 7(2):75e83, 1992.
O’Brien JP, Fahnestock SR, Termonia Y, Gardner KH: Nylons from nature: synthetic analogs to
spider silk, Adv Mater 10(15):1185e1195, 1998.
Peakall DB: Composition, function and glandular origin of the silk fibroins of the spider Araneus
diadematus Cl, J Exp Zool 156(3):345e352, 1964.
Peakall DB: Synthesis of silk, mechanism and location, Am Zool 9(1):71e79, 1969.
Putthanarat S, Stribeck N, Fossey S, Eby R, Adams W: Investigation of the nanofibrils of silk
fibers, Polymer 41(21):7735e7747, 2000.
Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, et al.: Spider
silk proteins-mechanical property and gene sequence, Zool Sci 22(3):273e281, 2005.
Rising A, Hj€ alm G, Engstr€ om W, Johansson J: N-terminal nonrepetitive domain common to
dragline, flagelliform, and cylindriform spider silk proteins, Biomacromolecules 7(11):
3120e3124, 2006.
R€ omer L, Scheibel T: The elaborate structure of spider silk, Prion 2(4):154e161, 2008.
Seidel A, Liivak O, Calve S, Adaska J, Ji G, Yang Z, et al.: Regenerated spider silk: processing,
properties, and structure, Macromolecules 33(3):775e780, 2000.
Shao Z, Vollrath F: The effect of solvents on the contraction and mechanical properties of spider
silk, Polymer 40(7):1799e1806, 1999.
Shao Z, Young RJ, Vollrath F: The effect of solvents on spider silk studied by mechanical testing
and single-fibre Raman spectroscopy, Int J Biol Macromol 24(2e3):295e300, 1999a.
Shao Z, Vollrath F, Sirichaisit J, Young RJ: Analysis of spider silk in native and supercontracted
states using Raman spectroscopy, Polymer 40(10):2493e2500, 1999b.
Shao Z, Vollrath F, Yang Y, Thøgersen HC: Structure and behavior of regenerated spider silk,
Macromolecules 36(4):1157e1161, 2003.
Simmons A, Ray E, Jelinski LW: Solid-state 13C NMR of Nephila clavipes dragline silk es-
tablishes structure and identity of crystalline regions, Macromolecules 27(18):5235e5237,
1994.
Simmons AH, Michal CA, Jelinski LW: Molecular orientation, two-component nature of the
crystalline fraction of spider dragline silk, Science 271(5245):84e87, 1996.
Slotta U, Hess S, Spieß K, Stromer T, Serpell L, Scheibel T: Spider silk and amyloid fibrils: a
structural comparison, Macromol Biosci 7(2):183e188, 2007.
Sponner A, Unger E, Grosse F, Weisshart K: Conserved C-termini of spidroins are secreted by
the major ampullate glands and retained in the silk thread, Biomacromolecules 5(3):
840e845, 2004.
Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, et al.: The conserved
C-termini contribute to the properties of spider silk fibroins, Biochem Biophys Res Commun
338(2):897e902, 2005a.
Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K: Characterization of the
protein components of Nephila clavipes dragline silk, Biochemistry 44(12):4727e4736,
2005b.
Termonia Y: Molecular modeling of spider silk elasticity, Macromolecules 27(25):7378e7381,
1994.