Page 243 - Handbook of Properties of Textile and Technical Fibres
P. 243
Engineering properties of spider silk 217
Knight DP, Vollrath F: Liquid crystals and flow elongation in a spider’s silk production line,
Proc R Soc B Biol Sci 266(1418):519e523, 1999.
Knight DP, Vollrath F: Spinning an elastic ribbon of spider silk, Philos Trans R Soc Lond Ser B
357(1418):219, 2002.
Knight DP, Knight MM, Vollrath F: Beta transition and stress-induced phase separation in the
spinning of spider dragline silk, Int J Biol Macromol 27(3):205e210, 2000.
Ko F: Nonlinear viscoelasticity of polyamide fibers, Atlanta, GA, USA, 1976, Georgia Institute
of Technology.
Ko F, Gandhi M: Producing nanofiber structures by electrospinning for tissue engineering,
Nanofibers and Nanotechnology in Textiles Woodhead Publishing, pp 22e44.
Ko FK, Jovicic J: Modeling of mechanical properties and structural design of spider web,
Biomacromolecules 5(3):780e785, 2004.
Ko F, Kawabata S, Inoue M, Niwa M, Fossey S, Song J: Engineering properties of spider silk,
Warrendale, PA, 1999, Materials Research Society, pp 17e24.
Ko FK, Kawabata S, Inoue M, Niwa M, Fossey S, Song JW: Engineering properties of spider
silk. In Proc MRS proceedings, Cambridge University Press. U1. 4.1.
Ko FK: Engineering properties of spider silk fibers. In Wallenberger FT, Weston NE,
editors: Natural fibers, plastics and composites,Boston, MA,USA, 2004, Springer,pp
27e49.
Ko F, Gandhi M, Karatzas C: Carbon nanotube reinforced spider silkea model for the next
generation of super strong and tough fibers. In . Proc 19th American society for composites
annual technical conference. Atlanta, GA, 2004.
K€ ohler T, Vollrath F: Thread biomechanics in the two orb-weaving spiders Araneus diadematus
(Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae), J Exp Zool
271(1):1e17, 1995.
K€ ummerlen J, van Beek JD, Vollrath F, Meier BH: Local structure in spider dragline silk
investigated by two-dimensional spin-diffusion nuclear magnetic resonance, Macromole-
cules 29(8):2920e2928, 1996.
Lazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F, Chretien N, et al.: Spider silk fibers
spun from soluble recombinant silk produced in mammalian cells, Science 295(5554):
472e476, 2002.
Leaderman H: Elastic and creep properties of filamentous materials and other high polymers,
Washington, D.C., 1943, The Textile Foundation.
Lef evre T, Boudreault S, Cloutier C, Pézolet M: Conformational and orientational trans-
formation of silk proteins in the major ampullate gland of Nephila clavipes spiders, Bio-
macromolecules 9(9):2399e2407, 2008.
Levi HW, Levi RL, Zim H: Aguide to spiders and their kin, New York, 1968, Golden Press.
Li S, McGhie A, Tang S: New internal structure of spider dragline silk revealed by atomic force
microscopy, Biophys J 66(4):1209, 1994.
Liu Y, Shao Z, Vollrath F: Relationships between supercontraction and mechanical properties of
spider silk, Nat Mater 4(12):901e905, 2005.
Liu Y, Shao Z, Vollrath F: Extended wet-spinning can modify spider silk properties, Chem
Commun (19):2489e2491, 2005.
Lucas F, Shaw J, Smith S: Comparative studies of fibroins: I. the amino acid composition of
various fibroins and its significance in relation to their crystal structure and taxonomy,
J Mol Biol 2(6):339e349, 1960.
Marples B: The spinnerets and epiandrous glands of spiders, J Linn Soc Lond Zool 46(310):
209e222, 1967.