Page 369 - Handbook of Properties of Textile and Technical Fibres
P. 369
342 Handbook of Properties of Textile and Technical Fibres
Hummel M, Michud A, Tanttu M, Asaadi S, Ma Y, Hauru LKJ, Parviainen A, King AWT,
Kilpel€ ainen I, Sixta H: Ionic liquids for the production of man-made cellulosic fibers: op-
portunities and challenges. In Rojas OJ, editor: Cellulose chemistry and properties: fibers,
nanocelluloses and advanced materials, Cham, 2016, Springer International Publishing.
Kamide K, Nishiyama K: Cuprammonium processes. In Woodings C, editor: Regenerated
cellulose fibres, Cambridge, England, 2001, Woodhead Publishing.
Kampl R, Schaumann W: The finishing behaviour of cellulosic man-made fibers of the second
and third generation, Lenzinger Berichte 75:91e96, 1996.
Kong K, Davies RJ, Mcdonald MA, Young RJ, Wilding MA, Ibbett RN, Eichhorn SJ: Influence
of domain orientation on the mechanical properties of regenerated cellulose fibers, Bio-
macromolecules 8:624e630, 2007.
Kong K, Eichhorn SJ: Crystalline and amorphous deformation of process-controlled cellulose-II
fibres, Polymer 46:6380e6390, 2005.
Kong K, Wilding MA, Ibbett RN, Eichhorn SJ: Molecular and crystal deformation of cellulose:
uniform strain or uniform stress? Faraday Discuss 139:283e298, 2008.
Kr€ assig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Mohring M, Schlosser H: Cel-
lulose. In Wiley-VCH, editor: Ullman”s fibers. Volume 1. Fiber classes, production and
characterization, Weinheim, Germany, 2008, Wiley-VCH Verlag GmbH & Co. KGaA.
Lenz J, Schurz J, Wrentschur E: The fibrillar structure of cellulosic man-made fibers spun from
different solvent systems, J Appl Polym Sci 35:1987e2000, 1988.
Lenz J, Schurz J, Wrentschur E: Properties and structure of solvent-spun and viscose-type fibres
in the swollen state, Colloid Polym Sci 271:460e468, 1993.
Liebert T: Cellulose solvents e remarkable history, bright future. In Liebert T, Heinze T,
Edgar KJ, editors: Cellulose solvents: for analysis, shaping and chemical modification,
Washington, DC, USA, 2010, American Chemical Society.
Mao Y, Zhang L, Cai J, Zhou J, Kondo T: Effects of coagulation conditions on properties of
multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution, Ind
Eng Chem Res 47:8676e8683, 2008.
Michud A, Tanttu M, Asaadi S, Ma Y, Netti E, K€ a€ ariainen P, Persson A, Berntsson A,
Hummel M, Sixta H: Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative
to viscose and Lyocell, Text Res J 86:543e552, 2016.
Mortimer SA, Peguy AA: The formation of structure in the spinning and coagulation of Lyocell
fibers, Cellul Chem Tech 30:117e132, 1996a.
Mortimer SA, Peguy AA: The influence of air-gap conditions on the structure formation of
lyocell fibers, J Appl Polym Sci 60:1747e1756, 1996b.
Mortimer SA, Péguy AA: Methods for reducing the tendency of lyocell fibers to fibrillate, J Appl
Polym Sci 60:305e316, 1996.
Mortimer SA, Peguy AA, Ball RC: Influence of the physical process parameters on the structure
formation of Lyocell fibers, Cellul Chem Tech 30:251e266, 1996.
Moss CE, Butler MF, M€ uller M, Cameron RE: Microfocus small-angle X-ray scattering
investigation of the skinecore microstructure of lyocell cellulose fibers, J Appl Polym Sci
83:2799e2816, 2002.
M€ uller M, Riekel C, Vuong R, Chanzy H: Skin/core micro-structure in viscose rayon fibres
analysed by X-ray microbeam and electron diffraction mapping, Polymer 41:2627e2632,
2000.
Northolt MG: Are stronger cellulose fibres feasible? Lenzing Berichte 59:71e78, 1985.
Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H: The structure and
properties of cellulose fibres spun from an anisotropic phosphoric acid solution, Polymer
42:8249e8264, 2001.